Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Adv Sci (Weinh) ; 11(13): e2308123, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240582

ABSTRACT

Fluoro- and chlorofluorocabons (FC/CFCs) are important refrigerants, solvents, and fluoropolymers in industry while being toxic and carrying high global warming potential. Detection and reclamation of FC/CFCs based on adsorption technology with highly selective adsorbents is important to labor safety and environmental protection. Herein, the study reports an integrated method to combine capture, separation, enrichment, and analysis of representative FC/CFCs (chlorodifluoromethane(R22) and 1,1,1,2-tetrafluoroethane (R134a)) by using the highly stable and porous Zr-MOF, DUT-67. Gas adsorption and breakthrough experiments demonstrate that DUT-67 has high R22/R134a uptake (124/116 cm3 g-1) and excellent R22/R134a/CO2 separation performance (IAST selectivities of R22/CO2 and R134a/CO2 ranging from 51.4 to 33.3, and 31.1 to 25.8), even in rather low concentration and humid conditions. A semi-quantitative analysis protocol is set up to analyze the low concentrations of R22/R134a based on the high selective R22/R134a adsorption ability, fast adsorption kinetics, water-resistant utility, facile regeneration, and excellent recyclability of DUT-67. In situ single-crystal X-ray diffraction, theoretical calculations, and in situ diffuse reflectance infrared Fourier transform spectra have been employed to understand the adsorption mechanism. This work may provide a potential adsorbent for purge and trap technique under room temperature, thus promoting the application of MOFs for VOCs sampling and quantitative analysis.

2.
ACS Appl Mater Interfaces ; 16(5): 6579-6588, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38275141

ABSTRACT

Purifying C2H6/C3H8 from a ternary natural gas mixture through adsorption separation is an important but challenging process in the petrochemical industry. To address this challenge, the industry is exploring effective strategies for designing high-performance adsorbents. In this study, we present two metal-organic frameworks (MOFs), DMOF-TF and DMOF-(CF3)2, which have fluorinated pores obtained by substituting linker ligands in the host material. This pore engineering strategy not only provides suitable pore confinement but also enhances the adsorption capacities for C2H6/C3H8 by providing additional binding sites. Theoretical calculations and transient breakthrough experiments show that the introduction of F atoms not only improves the efficiency of natural gas separation but also provides multiple adsorption sites for C2H6/C3H8-framework interactions.

3.
Angew Chem Int Ed Engl ; 61(26): e202201766, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35313055

ABSTRACT

The design and creation of soft porous crystals combining regularity and flexibility may promote potential applications for gas storage and separation due to their deformable framework's responsiveness to external stimuli. The flexibility of metal-organic frameworks (MOFs) relies on alterable degrees of freedom that are mainly provided by organic linkers or the junctions linking organic and inorganic building units. Herein, we report a new dynamic MOF whose flexibility originates from an unprecedented tailorable Mn8 O38 -cluster and shows simultaneous coordination geometry changes and ligand migration that are reversibly driven by guest exchange. This provides an extra degree of freedom to the framework's deformation, resulting in three-dimensional variations in the framework that subtly respond to varied aromatic molecules. The gas adsorption behavior of this flexible MOF was evaluated, and the selective separation of light hydrocarbons and Freon gases is achieved.

4.
Angew Chem Int Ed Engl ; 61(4): e202112097, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34779556

ABSTRACT

The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH2 -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.


Subject(s)
Metal-Organic Frameworks/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Air Pollution, Indoor , Humidity , Molecular Structure , Particle Size , Surface Properties , Water/chemistry , Water Pollutants, Chemical/chemistry
5.
Inorg Chem ; 60(12): 8456-8460, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34085808

ABSTRACT

A flexible and robust microporous copper(II) metal-organic framework (MOF) based on a methyl-functionalized ligand, namely, [Cu3(µ3-OH)2(L)2(DMF)] (LIFM-ZZ-1; L = 2,2'-dimethyl-4,4'-biphenyldicarboxylic acid and DMF = N,N-dimethylformamide), was constructed. Its sorption performance for the separation of CH4, C2H6, and C3H8 was investigated. LIFM-ZZ-1 showed a breathing behavior that led to a transition between large- and narrow-pore states. The sample also showed outstanding water stability. Gas adsorption experiments revealed that desolvated LIFM-ZZ-1 exhibited higher adsorption capacities for C2H6 and C3H8 (2.80 and 4.06 mmol·g-1) than for CH4 (0.39 mmol·g-1) at 298 K and 1 bar. Breakthrough experiments showed that a CH4/C2H6/C3H8 mixture was completely separated at 298 K, demonstrating the promising potential applications of this material for separating low contents of C2/C3 hydrocarbons from natural gas.

6.
Food Chem ; 360: 129948, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-33975070

ABSTRACT

A LC-Q-Orbitrap HRMS analytical method for both qualitative screening and quantitative determination of 90 synthetic dyes including ten groups of isomers in foods has been established. An in-house synthetic dyes database and characteristic ions were also developed. Based on Q-Orbitrap HRMS, mass spectrum and fragmentation patterns of synthetic dyes were studied, which indicated that double charged ions were usually the main precursor ions. Matrix effects were successfully eliminated by the C18 d-SPE clean-up coupled with dilute and shoot approach with methanol-water (1:4, v/v) in 100-fold. For most of the compounds, mean recoveries were satisfactory between 70% and 120% with RSD < 20% at three spiked level in the range of 0.025-1.0 mg/kg. The screening detection limits ranged from 0.025 - 1.0 mg/kg. Method validation showed that the established method was efficient, rapid and high-throughput, which has been successfully applied to the monitoring of these water-soluble synthetic dyes in foods.


Subject(s)
Chromatography, Liquid/methods , Food Coloring Agents/analysis , Mass Spectrometry/methods , Water/chemistry , Chromatography, High Pressure Liquid/methods , Limit of Detection , Reproducibility of Results , Solubility
7.
Inorg Chem ; 59(20): 14856-14860, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32986428

ABSTRACT

A flexible-robust copper(II) metal-organic framework, denoted as LIFM-100, has been successfully synthesized using a fluorinated linear dicarboxylate to link copper ions. LIFM-100 exhibits a breathing effect, which can transform reversibly between a large form (lp) and a narrow form (np) from single crystal to single crystal. In addition, LIFM-100 shows good thermal and chemical stability. By the introduction of trifluoromethyl functional groups and uncoordinated carboxyl acids, LIFM-100 features a good CO2/R22 adsorption/separation performance at 298 K, showing potential in natural gas purification and CO2/R22 capture.

8.
Angew Chem Int Ed Engl ; 59(43): 18920-18926, 2020 10 19.
Article in English | MEDLINE | ID: mdl-32820831

ABSTRACT

Transmembrane protein channels are an important inspiration for the design of artificial ion channels. Their dipolar structure helps overcome the high energy barrier to selectively translocate water and ions sharing one pathway, across the cell membrane. Herein, we report that the amino-imidazole (Imu) amphiphiles self-assemble via multiple H-bonding to form stable artificial Cl- -channels within lipid bilayers. The alignment of water/Cl- wires influences the conduction of ions, envisioned to diffuse along the hydrophilic pathways; at acidic pH, Cl- /H+ symport conducts along a partly protonated channel, while at basic pH, higher Cl- /OH- antiport translocate through a neutral channel configuration, which can be greatly activated by applying strong electric field. This voltage/pH regulated channel system represents an unexplored alternative for ion-pumping along artificial ion-channels, parallel to that of biology.

9.
Chempluschem ; 85(8): 1615, 2020 08.
Article in English | MEDLINE | ID: mdl-32696616

ABSTRACT

Invited for this month's cover is the group of Dr. Mihail Barboiu from the Institut Europeen des Membranes of Montpellier, France and the Lehn Institute of Functional Materials at Sun-yat Sen University in Guangzhou, China. The cover picture shows the molecular recognition of folded 1,ω-amino-acids guests within p-sulfonatocalix[4]arene host anions stabilized with alternating hydrated cations and water molecules. Read the full text of the article at 10.1002/cplu.202000232.

10.
Chempluschem ; 85(8): 1623-1631, 2020 08.
Article in English | MEDLINE | ID: mdl-32286737

ABSTRACT

Calix[4]arenes have the ability to encapsulate biomimetic guests, offering interesting opportunities to explore their molecular recognition, very close to biological scenarios. In this study, p-sulfonatocalix[4]arene (C4 A) anions and hydrated alkali cations have been used for the in situ recognition of cationic 1,ω-diammonium-alkanes and 1,ω-amino-acids of variable lengths. NMR spectroscopy illustrates that these systems are stable in aqueous solution and the interaction process involves several binding states or stabilized conformations within the C4 A anion, depending of the nature of the guest. DOSY experiments showed that monomeric 1 : 1 host-guest species are present, while the cation does not influence their self-assembly in solution. The folded conformations observed in the solid-state X-ray single-crystal structures shed light on the constitutional adaptivity of flexible chains to environmental factors. Futhermore, a comprehensive screening of 30 single crystal structures helped to understand the in situ conformational fixation and accurate determination of the folded structures of the confined guest molecules, with a compression up to 40 % compared with their linear conformations.

11.
Chemistry ; 26(37): 8254-8261, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32125735

ABSTRACT

Known for excellent stability, porosity and functionality, the high-valent Zr4+ metal-organic frameworks (Zr-MOFs) still meets synthetic challenge in modulating the strength of Zr-Ocarboxylate linkage. Herein we explore the unusual coordination dynamics of fluorinated Zr-MOFs by designing two trifluoromethyl modified ligands with distinct geometry preference to form a family of thermodynamic and kinetic products. The low-connecting kinetic Zr-MOFs possess substitutable coordination sites to endow Zr6 -cluster with extra dynamic behaviors, thus opening a post-synthetic pathway to sequential reassembly/disassembly processes. Comprehensive factors, including ligand geometry, Zr6 -cluster connectivity, acid modulator and reaction temperature/concentration, have been studied for controllable syntheses. The stability, hydrophobicity and gas adsorption/separation properties of obtained Zr-MOFs are explored. This work sheds light on the understanding of the dynamic coordination chemistry of Zr-MOFs beyond strong Zr-O bond, which poses a versatile platform for modification and functionalization of Zr-MOFs.

12.
Food Chem ; 309: 125745, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31678670

ABSTRACT

Simultaneous determination of multiclass illegal dyes possessing different chemical properties is difficult. By using LC-MS/MS via negative/positive ion switching mode, an efficient and fast multi-residual method for simultaneous determination of multiclass 52 illegal dyes with different acidic-basic properties in foodstuffs was developed and validated during one single run, including 23 fat-soluble neutral azo dyes, 8 acidic sulfonated azo dyes, 12 triphenylmethane basic dyes, three basic indole dyes, three xanthene dyes, one quinoline dye, and two anthraquinones dyes. The illegal dyes were extracted with methanol-acetonitrile and further purified with d-SPE procedure to reduce interference. Sample dilution with 100-fold was used for the elimination of matrix effects of the quantitation of LC-MS/MS analysis. Validation data showed the good recoveries in the range of 71.2-111.2%, with relative standard deviations less than 20%, suggesting the developed method is suitable for the identification and quantitation of multiclass illegal dyes at trace levels in foods.


Subject(s)
Chromatography, Liquid/methods , Coloring Agents/analysis , Food Contamination/analysis , Tandem Mass Spectrometry/methods
13.
Angew Chem Int Ed Engl ; 58(47): 17033-17040, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31507037

ABSTRACT

We transformed the hydrophilic metal-organic framework (MOF) UiO-67 into hydrophobic UiO-67-Rs (R=alkyl) by introducing alkyl chains into organic linkers, which not only protected hydrophilic Zr6 O8 clusters to make the MOF interspace superoleophilic, but also led to a rough crystal surface beneficial for superhydrophobicity. The UiO-67-Rs displayed high acid, base, and water stability, and long alkyl chains offered better hydrophobicity. Good hydrophobicity/oleophilicity were also possible with mixed-ligand MOFs containing metal-binding ligands. Thus, a (super)hydrophobic MOF catalyst loaded with Pd centers efficiently catalyzed Sonogashira reactions in water at ambient temperature. Studies of the hydrophobic effects of the coordination interspace and the outer surface suggest a simple de novo strategy for the synthesis of superhydrophobic MOFs that combine surface roughness and low surface energy. Such MOFs have potential for environmentally friendly catalysis and water purification.

14.
Angew Chem Int Ed Engl ; 58(35): 12037-12042, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31225679

ABSTRACT

The self-assembly of triazole amphiphiles was examined in solution, the solid state, and in bilayer membranes. Single-crystal X-ray diffraction experiments show that stacked protonated triazole quartets (T4 ) are stabilized by multiple strong interactions with two anions. Hydrogen bonding/ion pairing of the anions are combined with anion-π recognition to produce columnar architectures. In bilayer membranes, low transport activity is observed when the T4 channels are operated as H+ /X- translocators, but higher transport activity is observed for X- in the presence of the K+ -carrier valinomycin. These self-assembled superstructures, presenting intriguing structural behaviors such as directionality, and strong anion encapsulation by hydrogen bonding supported by vicinal anion-π interactions can serve as artificial supramolecular channels for transporting anions across lipid bilayer membranes.

15.
Angew Chem Int Ed Engl ; 58(29): 9752-9757, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31144372

ABSTRACT

The design of white-light phosphors is attractive in solid-state lighting (SSL) and related fields. A new strategy in obtaining white light emission (WLE) from dual-way photon energy conversion in a series of dye@MOF (LIFM-WZ-6) systems is presented. Besides the traditional UV-excited one-photon absorption (OPA) pathway, white-light modulation can also be gained from the combination of NIR-excited green and red emissions of MOF backbone and encapsulated dyes via two-photon absorption (TPA) pathway. As a result, down-conversion OPA white light was obtained for RhB+ @LIFM-WZ-6 (0.1 wt %), BR-2+ @LIFM-WZ-6 (2 wt %), and APFG+ @LIFM-WZ-6 (0.1 wt %) samples under 365 nm excitation. RhB+ @LIFM-WZ-6 (0.05 wt %), BR-2+ @LIFM-WZ-6 (1 wt %) and APFG+ @LIFM-WZ-6 (0.05 wt %) exhibit up-conversion TPA white light under the excitation of 800, 790, and 730 nm, respectively. This new WLE generation strategy combines different photon energy conversion mechanisms together.

16.
IUCrJ ; 6(Pt 1): 85-95, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30713706

ABSTRACT

Metal-organic frameworks with highly ordered porosity have been studied extensively. In this paper, the effect of framework (pore) disorder on the gas sorption of azole-based isoreticular Cu(II) MOFs with rtl topology and characteristic 1D tubular pore channels is investigated for the first time. In contrast to other isoreticular rtl metal-organic frameworks, the Cu(II) metal-organic framework based on 5-(1H-imidazol-1-yl)isophthalate acid has a crystallographically identifiable disordered framework without open N-donor sites. The framework provides a unique example for investigating the effect of pore disorder on gas sorption that can be systematically evaluated. It exhibits remarkable temperature-dependent hysteretic CO2 sorption up to room temperature, and shows selectivity of CO2 over H2, CH4 and N2 at ambient temperature. The unique property of the framework is its disordered structure featuring distorted 1D tubular channels and DMF-guest-remediated defects. The results imply that structural disorder (defects) may play an important role in the modification of the performance of the material.

17.
J Am Chem Soc ; 141(6): 2589-2593, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30645112

ABSTRACT

We demonstrate herein a facile strategy to engineer versatile catalytically active coordination interspace in the same primitive metal-organic framework (MOF) for variable heterogeneous catalysis. Different functional ligands can be reversibly inserted into and removed from proto-LIFM-28 individually or successively to bring in single or binary catalytic sites for specific reactions and switch the parent MOF to multipurpose catalysts. Alcohol-oxidation, Knoevenagel-condensation, click, acetal, and Baylis-Hillman reactions are achievable through simple exchange of a single catalytic spacer, while sequential or stepwise reactions are designable via selective combination of two catalytic spacers with different functionalities, thus making proto-LIFM-28 a multivariate MOF for multiuse and economic catalysis.

18.
Angew Chem Int Ed Engl ; 58(11): 3481-3485, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30615238

ABSTRACT

Long persistent luminescence (LPL) materials have a unique photophysical mechanism to store light radiation energy for subsequent release. However, in comparison to the common UV source, white-light (WL) and near-infrared (NIR) excited LPL is scarce. Herein we report a metal-organic supramolecular box based on a D-π-A-type ligand. Owing to the integrated one-photon absorption (OPA) and two-photon absorption (TPA) attributes of the ligand, the heavy-atom effect of the metal center, as well as π-stacking and J-aggregation states in the supramolecular assembly, LPL can be triggered by all wavebands from the UV to the NIR region. This novel designed supramolecular kit to afford LPL by both OPA and TPA pathways provides potential applications in anti-counterfeiting, camouflaging, decorating, and displaying, among others.

19.
RSC Adv ; 9(64): 37222-37231, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-35542309

ABSTRACT

An hourglass porous metal-organic framework, LIFM-12, constructed on a T-shaped flexible ligand with Cu2+ paddle-wheel clusters, shows temperature and gas adsorption responsive structural dynamics upon reversible molecular guest binding. Temperature-dependent single crystal and powder X-ray diffraction experiments show that the open gate status of the framework with adaptive behaviours facilitates kinetic diffusion of gas molecules resulting in the sequential filling of pores of different sizes, thus creating a breathing behaviour reminiscent of the observation of several steps in adsorption isotherms. In addition, adsorption studies revealed that LIFM-12 performs exceptional adsorption selectivity of 10-25 for CO2 versus light gases N2, CH4, and CO and up to 200 for C3H6 versus CH4.

20.
Inorg Chem ; 58(1): 61-64, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30588809

ABSTRACT

A trifluoromethyl functionalized linker and Cu-O chain composed MOF, LIFM-100, was used as "crystalline sponge" to determine eight hardly crystallized liquids' configurations based on its flexibility conformation, suitable pore size, electron-rich channel environment, and low symmetric space group. The H bond interactions between host-guest and guest-guest were well analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL