Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 21(10)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37888439

ABSTRACT

A systematic chemical investigation of the deep-sea-derived fungus Aspergillus versicolor 170217 resulted in the isolation of six new (1-6) and 45 known (7-51) compounds. The structures of the new compounds were established on the basis of exhaustive analysis of their spectroscopic data and theoretical-statistical approaches including GIAO-NMR, TDDFT-ECD/ORD calculations, DP4+ probability analysis, and biogenetic consideration. Citriquinolinones A (1) and B (2) feature a unique isoquinolinone-embedded citrinin scaffold, representing the first exemplars of a citrinin-isoquinolinone hybrid. Dicitrinones K-L (3-4) are two new dimeric citrinin analogues with a rare CH-CH3 bridge. Biologically, frangula-emodin (32) and diorcinol (17) displayed remarkable anti-food allergic activity with IC50 values of 7.9 ± 3.0 µM and 13.4 ± 1.2 µM, respectively, while diorcinol (17) and penicitrinol A (20) exhibited weak inhibitory activity against Vibrio parahemolyticus, with MIC values ranging from 128 to 256 µM.


Subject(s)
Citrinin , Citrinin/chemistry , Aspergillus/chemistry , Fungi , Magnetic Resonance Spectroscopy , Molecular Structure
2.
Chem Biodivers ; 19(12): e202200963, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36436828

ABSTRACT

The Cladosporium fungi, one of the largest genera of dematiaceous hyphomycetes, could produce various bioactive secondary metabolites. From the AcOEt-soluble extract of Cladosporium oxysporum 170103, three new secopatulolides (1-3) and thirteen known compounds (4-16) were obtained. Their structures were established by detailed analysis of the NMR and HR-ESI-MS data. All sixteen compounds were tested for antibacterial activity against Vibrio parahemolyticus, ergosterol (10) presented moderate effect with the minimum inhibitory concentration (MIC) of 32 µM. It can destruct the membrane integrity of Vibrio parahemolyticus to change the cell shape.


Subject(s)
Anti-Bacterial Agents , Cladosporium , Cladosporium/chemistry , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fungi
3.
Asian J Androl ; 24(1): 102-108, 2022.
Article in English | MEDLINE | ID: mdl-34100389

ABSTRACT

Klinefelter syndrome (KS) is one of the most frequent genetic abnormalities and the leading genetic cause of nonobstructive azoospermia. The breeding and study of KS mouse models are essential to advancing our knowledge of the underlying pathological mechanism. Karyotyping and fluorescence in situ hybridization are reliable methods for identifying chromosomal contents. However, technical issues associated with these methods can decrease the efficiency of breeding KS mouse models and limit studies that require rapid identification of target mice. To overcome these limitations, we developed three polymerase chain reaction-based assays to measure specific genetic information, including presence or absence of the sex determining region of chromosome Y (Sry), copy number of amelogenin, X-linked (Amelx), and inactive X specific transcripts (Xist) levels. Through a combined analysis of the assay results, we can infer the karyotype of target mice. We confirmed the utility of our assays with the successful generation of KS mouse models. Our assays are rapid, inexpensive, high capacity, easy to perform, and only require small sample amounts. Therefore, they facilitate the breeding and study of KS mouse models and help advance our knowledge of the pathological mechanism underlying KS.


Subject(s)
Azoospermia , Klinefelter Syndrome , Animals , In Situ Hybridization, Fluorescence , Karyotyping , Klinefelter Syndrome/genetics , Mice , Polymerase Chain Reaction
4.
Inflammation ; 44(3): 846-858, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33140204

ABSTRACT

Periodontitis is a chronic inflammatory disease induced by Porphyromonas gingivalis (P. gingivalis) and other pathogens. P. gingivalis release various virulence factors including lipopolysaccharide (LPS). However, whether P. gingivalis-LPS inducing pyroptosis in human gingival fibroblasts (HGFs) remains unknown. In present study, P. gingivalis-LPS decreased the membrane integrity of HGFs, and pyroptosis-associated cytokines were upregulated at the mRNA level. In addition, pyroptosis proteins were highly expressed in gingival tissues of periodontitis. P. gingivalis-LPS induced gingivitis in the rat model, and the expression level of pyroptosis-associated proteins increased. Together, P. gingivalis-LPS can activate the pyroptosis reaction, which may be a pro-pyroptosis status in a relative low concentration.


Subject(s)
Fibroblasts/drug effects , Gingiva/drug effects , Gingivitis/chemically induced , Lipopolysaccharides/toxicity , Porphyromonas gingivalis/metabolism , Pyroptosis/drug effects , Animals , Caspase 1/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gingiva/metabolism , Gingiva/pathology , Gingivitis/metabolism , Gingivitis/pathology , Humans , Lipopolysaccharides/isolation & purification , Male , Rats, Sprague-Dawley , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...