Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Chronobiol Int ; 39(10): 1340-1351, 2022 10.
Article in English | MEDLINE | ID: mdl-35903031

ABSTRACT

BMAL1 is a core circadian clock gene that is expressed rhythmically in a variety of tumor cells and is related to cancer cell proliferation and chemoradiotherapy sensitivity. Radiotherapy plays an important role in the treatment of nasopharyngeal carcinoma (NPC). However, the rhythmicity of BMAL1 in NPC, as well as its precise role in radiotherapy, remains unclear. We assessed changes in BMAL1 expression over 48 h in NPC cells and normal nasopharyngeal epithelial cells NP69 using real-time quantitative polymerase chain reaction (RT-PCR) and western blotting (WB). Then, we induced the overexpression and knocked-down the levels of BMAL1 in NPC cells, and subsequently used Cell Counting Kit-8 assays to assess the proliferation of NPC cells. Xenograft tumour growth was used to evaluate the effect of BMAL1 in vivo. Immunohistochemical staining was used to detect the expression of BMAL1 protein in transplanted tumors. Gene Set Enrichment Analysis (GSEA) was performed to explore the biological signaling pathway. Finally, RT-PCR and WB were used to detect the expressions of BMAL1, p53 and p21. The results showed that the mRNA expression levels of circadian clock gene BMAL1 fluctuated rhythmically with time, and the expression levels of BMAL1 also changed depending on the protein levels in NPC and NP69 cells. Overexpression of BMAL1 inhibited the proliferation of NPC cells, while knockdown BMAL1 had the opposite effects. In a xenograft model, we observed that the upregulation of BMAL1 inhibited tumor growth and enhanced the sensitivity of NPC cells to radiotherapy. Ultimately, the downregulation of BMAL1 promoted tumor growth and decreased radiosensitivity. GSEA analysis suggested that BMAL1 significantly affected the p53 pathway. Overexpression of BMAL1 promoted the expression of p53 and p21, while the knockdown of BMAL1 inhibited the expression of p53 and p21. We speculate that BMAL1 has the potential to be a prognostic biomarker and therapeutic target for NPC.


Subject(s)
Circadian Clocks , Nasopharyngeal Neoplasms , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation , Circadian Clocks/genetics , Circadian Rhythm , Gene Expression Regulation, Neoplastic , Humans , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/radiotherapy , Tumor Suppressor Protein p53/genetics
2.
BMJ Open ; 12(4): e053691, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477886

ABSTRACT

OBJECTIVES: Platelet count is an independent predictor of mortality in patients with cancer. It remains unknown whether the platelet count is related to in-hospital mortality in severely ill patients with tumours. DESIGN: A retrospective study based on a dataset from a multicentre cohort. SETTING: This was a secondary analysis of data from one Electronic Intensive Care Unit Collaborative Research Database survey cycle (2014-2015). PARTICIPANTS: The data pertaining to severely ill patients with tumours were collected from 208 hospitals located across the USA. This study initially a total of 200 859 participants. After the population was limited to patients with combined tumours and platelet deficiencies, the remaining 2628 people were included in the final data analysis. PRIMARY AND SECONDARY OUTCOME MEASURES: The main measure was the platelet count, and the main outcome was in-hospital mortality. RESULTS: After adjustment for the covariates, the platelet count had a curvilinear relationship with in-hospital mortality (p<0.001). The first inflection point was 18.4 (per 10 change). On the left side of the first inflection point (platelet count ≤184 'x10ˆ9/L), an increase of 10 in the platelet count was negatively associated with in-hospital mortality (OR 0.92, 95% CI 0.89 to 0.95, p<0.001). The second inflection point was 44.5 (per 10 change). Additional increases of 10 in the platelet count thereafter were positively associated with hospital mortality (OR 1.13, 95% CI 1.00 to 1.28, p=0.0454). The baseline platelet count was in the range of 184 'x10ˆ9/L-445 'x10ˆ9/L(p=0.0525), and the hospital mortality was lower than the baseline platelet count in other ranges. CONCLUSIONS: The relationship between platelet count and in-hospital mortality in critically ill patients with tumours was curvilinear. The lowest in-hospital mortality was associated with platelet count between 184 'x10ˆ9/Land 445 'x10ˆ9/L. This indicates that both high and low platelet count should receive attention in clinical practice.


Subject(s)
Blood Platelets , Neoplasms , Cohort Studies , Critical Illness , Hospital Mortality , Humans , Retrospective Studies
3.
Alcohol Clin Exp Res ; 44(8): 1585-1597, 2020 08.
Article in English | MEDLINE | ID: mdl-32524615

ABSTRACT

BACKGROUND: Alcohol use disorders affect millions of people worldwide, and there is growing evidence that excessive alcohol intake causes severe damage to the brain of both humans and animals. Numerous studies on chronic alcohol exposure in animal models have identified that many functional impairments are associated with the hippocampus, which is a structure exhibiting substantial vulnerability to alcohol exposure. However, the precise mechanisms that lead to structural and functional impairments of the hippocampus are poorly understood. Herein, we report a novel cell death type, namely pyroptosis, which accounts for alcohol neurotoxicity in mice. METHODS: For this study, we used an in vivo model to induce alcohol-related neurotoxicity in the hippocampus. Adult male C57BL/6 mice were treated with 95% alcohol vapor either alone or in combination with selective cannabinoid receptor antagonists or agonists, and VX765 (Belnacasan), which is a selective caspase-1 inhibitor. RESULTS: Alcohol-induced in vivo pyroptosis occurs because of an increase in the levels of pyroptotic proteins such as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), caspase-1, gasdermin D (GSDMD), and amplified inflammatory response. Our results indicated that VX765 suppressed the expression of caspase-1 and inhibited the maturation of the proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-18. Additionally, chronic alcohol intake created an imbalance in the endocannabinoid system and regulated 2 cannabinoid receptors (CB1R and CB2R) in the hippocampus. Specific antagonists of CB1R (AM251 and AM281) significantly ameliorated alcohol-induced pyroptosis signaling and inactivated the inflammatory response. CONCLUSIONS: Alcohol induces hippocampal pyroptosis, which leads to neurotoxicity, thereby indicating that pyroptosis may be an essential pathway involved in chronic alcohol-induced hippocampal neurotoxicity. Furthermore, cannabinoid receptors are regulated during this process, which suggests promising therapeutic strategies against alcohol-induced neurotoxicity through pharmacologic inhibition of CB1R.


Subject(s)
Alcohol-Induced Disorders, Nervous System/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Central Nervous System Depressants/toxicity , Ethanol/toxicity , Hippocampus/drug effects , Neuroprotective Agents/pharmacology , Pyroptosis/drug effects , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Cannabinoid Receptor Agonists/pharmacology , Caspase 1/drug effects , Caspase 1/metabolism , Caspase Inhibitors/pharmacology , Dipeptides/pharmacology , Inflammation , Interleukin-18/metabolism , Interleukin-1beta/drug effects , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Morpholines/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurotoxicity Syndromes , Phosphate-Binding Proteins/drug effects , Phosphate-Binding Proteins/metabolism , Piperidines/pharmacology , Pyrazoles/pharmacology , para-Aminobenzoates/pharmacology
4.
Forensic Sci Int Genet ; 47: 102312, 2020 07.
Article in English | MEDLINE | ID: mdl-32480323

ABSTRACT

Currently, mRNA profiling is widely investigated for forensic body fluid identification, while it is still required to advance the approach for those casework samples of limited quantity or low quality. The inclusion of circular RNAs (circRNAs) can facilitate the detection of mRNA markers in forensic body fluid identification. In this study, a multiplex assay for forensic body fluid identification (F18plex assay) was developed by incorporating 14 tissue-specific mRNA markers with circRNAs expression, 2 mRNA markers with high abundance and 2 housekeeping markers for the discrimination of the most common forensic body fluids, including blood, menstrual blood, saliva, vaginal secretion, semen and urine. The markers employed in the F18plex assay show similar specificity to previous reports. Additionally, even if all linear transcripts were completely erased, the expected markers in target biofluids could still be identified, which should help the discrimination of those aged biological stains. Results from sensitivity testing and the detection of mixtures demonstrate good sensitivity of the multiplex assay. Generally, full biomarker profiles could be obtained with ≥1 µl of blood, saliva, or semen, and ≥1 ng of total RNAs from menstrual blood, vaginal secretion, or urine samples, respectively, using this multiplex assay under the established conditions. Collectively, the newly established multiplex assay can assist in determining the biological origin of forensic stains.


Subject(s)
Forensic Genetics/methods , Genetic Markers , Multiplex Polymerase Chain Reaction , RNA, Circular/metabolism , RNA, Messenger/metabolism , Adult , Animals , Blood Chemical Analysis , Cervix Mucus/chemistry , Female , Humans , Male , Menstruation , Middle Aged , Saliva/chemistry , Semen/chemistry , Sensitivity and Specificity , Urine/chemistry , Young Adult
5.
Toxicol Lett ; 313: 77-90, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31220554

ABSTRACT

Quetiapine is a common atypical antipsychotic used to treat mental disorders such as schizophrenia, bipolar disorder, and major depressive disorder. There has been increasing number of reports describing its cardiotoxicity. However, the molecular mechanisms underlying quetiapine-induced myocardial injury remain largely unknown. Herein, we reported a novel cell death type, quetiapine-induced necroptosis, which accounted for quetiapine cardiotoxicity in mice and proposed novel therapeutic strategies. Quetiapine-treated hearts showed inflammatory infiltration and evident fibrosis after 21-day continuous injection. The specific increases of protein levels of RIP3, MLKL and the phosphorylation of MLKL showed that quetiapine induced necroptotic cell death both in vivo and in vitro. Pharmacologic blockade of necroptosis using its specific inhibitor Necrostatin-1 attenuated quetiapine-induced myocardial injury in mice. In addition, quetiapine imbalanced the endocannabinoid system and caused opposing effects on two cannabinoid receptors (CB1R and CB2R). Specific antagonists of CB1R (AM 281, Rimonabant), but not its agonist ACEA significantly ameliorated the heart histopathology induced by chronic quetiapine exposure. By contrast, specific agonists of CB2R (JWH-133, AM 1241), but not its antagonist AM 630 exerted beneficial roles against quetiapine cardiotoxicity. The protective agents (AM 281, Rimonabant, AM 1241, and JWH-133) consistently inactivated the quetiapine-induced necroptosis signaling. Quetiapine bidirectionally regulates cannabinoid receptors and induces myocardial necroptosis, leading to cardiac toxic effects. Therefore, pharmacologic inhibition of CB1R or activation of CB2R represents promising therapeutic strategies against quetiapine-induced cardiotoxicity.


Subject(s)
Antipsychotic Agents/toxicity , Apoptosis/drug effects , Cannabinoid Receptor Agonists/toxicity , Cannabinoid Receptor Antagonists/toxicity , Cardiomyopathies/chemically induced , Myocytes, Cardiac/drug effects , Quetiapine Fumarate/toxicity , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiotoxicity , Cell Line , Endocannabinoids/metabolism , Male , Mice, Inbred BALB C , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Necrosis , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction/drug effects
6.
Br J Pharmacol ; 176(7): 890-905, 2019 04.
Article in English | MEDLINE | ID: mdl-30707759

ABSTRACT

BACKGROUND AND PURPOSE: Clozapine is an atypical antipsychotic drug that is very efficacious in treating psychosis, but the risk of severe cardiotoxicity limits its clinical use. The present study investigated the harmful effects of clozapine on myocardium and assessed the involvement of cannabinoid receptors in its cardiotoxicity. EXPERIMENTAL APPROACH: Clozapine alone or in combination with selective cannabinoid receptor antagonists or agonists were used to treat mice and cardiomyocytes. KEY RESULTS: Clozapine induced myocardial inflammation and infiltration 7 days after i.p. injection. Mice survival rate and myocardial infiltration, and fibrotic lesions were dose-dependently worsened by clozapine. Clozapine decreased major endocannabinoid levels in sera and cultured cardiomyocytes. Cannabinoid CB1 receptors decreased in clozapine-treated hearts and were translocated from cytomembranes to cytoplasm and nuclei, whereas CB2 receptors increased in clozapine-treated hearts and inversely translocated from nuclei to the cytomembrane. Selective antagonists of CB1 receptors, rimonabant and AM281, but not its selective agonist arachidonyl-2'-chloroethylamide, ameliorated clozapine-induced myocardial inflammatory infiltration and fibrotic lesions. In contrast, selective agonists of CB2 receptors, AM1241 and JWH-133, but not its selective antagonist AM630, blunted clozapine-mediated cardiotoxicity in mice. In cultured cardiomyocytes, clozapine increased the pro-inflammatory factor IL-1ß and the concentrations of myocardial injury markers (LDH and aspartate aminotransferase); these effects were reversed by either a CB1 antagonist or CB2 agonist and further prevented by combined pretreatments. CONCLUSIONS AND IMPLICATIONS: Our data provide evidence that cannabinoid CB1 and CB2 receptors have opposite effects and selective antagonists of CB1 or agonists of CB2 receptors might confer protective effects against clozapine in myocardium.


Subject(s)
Antipsychotic Agents/pharmacology , Cardiotoxicity/metabolism , Clozapine/pharmacology , Myocardium/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Cardiotoxicity/pathology , Cell Line , Male , Mice , Myocardium/pathology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors
7.
Mol Cell ; 65(1): 131-141, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27989437

ABSTRACT

Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication.


Subject(s)
Chromatin/genetics , DNA Replication , DNA, Fungal/genetics , Nucleosomes/genetics , Replication Origin , Saccharomyces cerevisiae/genetics , Chromatin/metabolism , DNA/genetics , DNA/metabolism , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , DNA, Fungal/biosynthesis , Genotype , Humans , Nucleosomes/metabolism , Phenotype , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Time Factors
9.
Med Sci Monit ; 22: 3316-27, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27643564

ABSTRACT

BACKGROUND It is not uncommon that only mild coronary artery stenosis is grossly revealed after a system autopsy. While coronary artery spasm (CAS) is the suspected mechanism of these deaths, no specific biomarker has been identified to suggest antemortem CAS. MATERIAL AND METHODS To evaluate the potential of using phosphorylated myosin light chain 2 (p-MLC2) as a diagnostic marker of antemortem CAS, human vascular smooth muscle cells (VSMCs) were cultured and treated with common vasoconstrictors, including prostaglandins F2α (PGF2α), acetylcholine (ACh), and 5-hydroxy tryptamine (5-HT). The p-MLC2 level was examined in the cultured cells using Western blot analysis and in a rat model of spasm provocation tests using immunohistochemistry (IHC). Effects of increased p-MLC2 level on VSMCs contractile activities were assessed in vitro using confocal immunofluorescence assay. Four fatal cases with known antemortem CAS were collected and subject to p-MLC2 detection. RESULTS The p-MLC2 was significantly increased in VSMCs after treatments with vasoconstrictors and in the spasm provocation tests. Myofilament was well-organized and densely stained in VSMCs with high p-MLC2 level, but disarrayed in VSMCs with low p-MLC2 level. Three of the 4 autopsied cases showed strongly positive staining of p-MLC2 at the stenosed coronary segment and the adjacent interstitial small arteries. The fourth case was autopsied at the 6th day after death and showed negative-to-mild positive staining of p-MLC2. CONCLUSIONS p-MLC2 might be a useful marker for diagnosis of antemortem CAS. Autopsy should be performed as soon as possible to collect coronary arteries for detection of p-MLC2.


Subject(s)
Cardiac Myosins/metabolism , Coronary Stenosis/metabolism , Coronary Vasospasm/metabolism , Myosin Light Chains/metabolism , Animals , Biomarkers/metabolism , Blood Pressure/drug effects , Cells, Cultured , Coronary Angiography/methods , Coronary Vessels/metabolism , Diagnosis , Humans , Male , Phosphorylation , Rats , Rats, Sprague-Dawley , Vasoconstrictor Agents/therapeutic use
11.
Forensic Sci Med Pathol ; 11(4): 530-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26363634

ABSTRACT

Precise estimation of postmortem interval (PMI) is crucial in some criminal cases. This study aims to find some optimal markers for PMI estimation and build a mathematical model that could be used in various temperature conditions. Different mRNA and microRNA markers in rat brain samples were detected using real-time fluorescent quantitative PCR at 12 time points within 144 h postmortem and at temperatures of 4, 15, 25, and 35 °C. Samples from 36 other rats were used to verify the animal mathematical model. Brain-specific mir-9 and mir-125b are effective endogenous control markers that are not affected by PMI up to 144 h postmortem under these temperatures, whereas the commonly used U6 is not a suitable endogenous control in this study. Among all the candidate markers, ΔCt (ß-actin) has the best correlation coefficient with PMI and was used to build a new model using R software which can simultaneously manage both PMI and temperature parameters. This animal mathematical model is verified using samples from 36 other rats and shows increased accuracy for higher temperatures and longer PMI. In this study, ß-actin was found to be an optimal marker to estimate PMI and some other markers were found to be suitable to act as endogenous controls. Additionally, we have used R code software to build a model of PMI estimation that could be used in various temperature conditions.


Subject(s)
Brain/pathology , Models, Theoretical , Postmortem Changes , RNA Stability , Temperature , Actins/genetics , Actins/metabolism , Animals , Brain/metabolism , Genetic Markers , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Animal , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Software , Specimen Handling
12.
J Cancer ; 6(8): 767-75, 2015.
Article in English | MEDLINE | ID: mdl-26185539

ABSTRACT

OBJECTIVE: A high level of RGS17 expression is observed in diverse human cancers and correlates with tumor progression. Herein, we aim to investigate its expression and function in breast cancer. METHODS: The expression of RGS17 was detected by immunohistochemical analysis and western blot analysis. The level of miR-32 expression was investigated by qRT-PCR. Western blot analysis was used to determine the relationship between RGS17 and miR-32. A series of loss or gain of function assays was performed to measure the effects of RGS17 or miR-32 on tumor migration, invasion, and proliferation. RESULTS: Compared to that in normal breast specimen, the expression of RGS17 had a significantly higher expression level in breast cancer tissues and cell lines. Although the potential relationship of RGS17 expression with clinicopathological features was not observed, there was a significant correlation of RGS17 expression with p63 expression. In cells, inhibition of RGS17 expression impaired cell migration, invasion, and proliferation. Further, RGS17 was identified as a direct and functional target of miR-32. Overexpression of miR-32 in cells could decrease the expression of RGS17 and inhibit cell migration, invasion, and proliferation. In contrast, ectopic expression of RGS17 could attenuate phenotypes caused by miR-32 overexpression. CONCLUSION: The expression of RGS17 was upregulated in breast cancer, which could enhance cell migration, invasion, and proliferation. Moreover, the RGS17 was identified as a target of miR-32. Our results suggest that RGS17 might play an important role in breast cancer progression and could be a potential target for human breast cancer treatment.

13.
Breast Cancer Res Treat ; 147(3): 487-500, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25193278

ABSTRACT

Specificity protein 1(Sp1) is a ubiquitous transcription factor and is highly expressed in breast cancer. However, its expression pattern and role in breast cancer progression remain unclear. The purpose of this study is to examine the expression pattern of Sp1 and determine its role in breast cancer progression. Immunohistochemistry (IHC) was performed on breast cancer tissues to reveal the expression pattern of Sp1. Spearman rank correlation was used for clinical statistics. Gene and protein expressions were monitored by IHC analysis, quantitative polymerase chain reaction, and Western blot. Wound-healing and Transwell assays were conducted to assess the role of Sp1 in breast cancer. Co-immunoprecipitation, deletion mutagenesis, chromatin immunoprecipitation, and dual luciferase reporter gene assays were used for investigation of the regulatory network. Sp1 expression was downregulated in late stage breast cancer and in highly invasive breast cancer cell lines. Expression of Sp1 was negatively correlated with TNM staging (P = 0.002) and metastasis status (P = 0.023). Overexpression of Sp1 inhibited breast cancer cell migratory and invasive abilities, whereas knockdown of GTP-binding RAS-like 3 (DIRAS3, also known as ARHI, NOEY2) attenuated the inhibitory effects. Moreover, re-expression of DIRAS3 abolished Sp1 knockdown-mediated cell migration and invasion. Jumonji domain containing 2A (JMJD2A) inhibited Sp1 autoregulation and explains Sp1 expression pattern in breast cancer. Sp1 negatively regulated breast cancer metastasis by transcriptional activation of DIRAS3. Inhibition of Sp1 autoregulation by JMJD2A contributed to Sp1 expression pattern in breast cancer. Our findings provided evidence that targeted therapy against Sp1 might be useful in early stage breast cancer. However, in late stages, development of Sp1 activator may be more promising for breast cancer treatments.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Jumonji Domain-Containing Histone Demethylases/metabolism , Sp1 Transcription Factor/genetics , rho GTP-Binding Proteins/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Silencing , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Middle Aged , Promoter Regions, Genetic , Sp1 Transcription Factor/metabolism , rho GTP-Binding Proteins/genetics
14.
Breast Cancer Res ; 16(3): R56, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24886710

ABSTRACT

INTRODUCTION: Breast cancer is a worldwide health problem and the leading cause of cancer death among females. We previously identified Jumonji domain containing 2A (JMJD2A) as a critical mediator of breast cancer proliferation, migration and invasion. We now report that JMJD2A could promote breast cancer progression through transcriptional repression of the tumor suppressor aplasia Ras homolog member I (ARHI). METHODS: Immunohistochemistry was performed to examine protein expressions in 155 cases of breast cancer and 30 non-neoplastic tissues. Spearman correlation analysis was used to analyze the correlation between JMJD2A expression and clinical parameters as well as several tumor regulators in 155 cases of breast cancer. Gene and protein expressions were monitored by quantitative polymerase chain reaction (qPCR) and Western blot. Results from knockdown of JMJD2A, overexpression of JMJD2A, Co-immunoprecipitation (Co-IP) assay, dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) elucidated molecular mechanisms of JMJD2A action in breast cancer progression. Furthermore, the effects of ARHI overexpression on JMJD2A-mediated tumor progression were investigated in vitro and in vivo. For in vitro experiments, cell proliferation, wound-healing, migration and invasion were monitored by cell counting, scratch and Boyden Chamber assays. For in vivo experiments, control cells and cells stably expressing JMJD2A alone or together with ARHI were inoculated into mammary fat pads of mice. Tumor volume, tumor weight and metastatic nodules were measured by caliper, electronic balance and nodule counting, respectively. RESULTS: JMJD2A was highly expressed in human breast cancers and positively correlated with tumor progression. Knockdown of JMJD2A increased ARHI expression whereas overexpression of JMJD2A decreased ARHI expression at both protein and mRNA levels. Furthermore, E2Fs and histone deacetylases were involved in the transcriptional repression of ARHI expression by JMJD2A. And the aggressive behavior of JMJD2A in breast cancers could be reversed by re-expression of ARHI in vitro and in vivo. CONCLUSION: We demonstrated a cancer-promoting effect of JMJD2A and defined a novel molecular pathway contributing to JMJD2A-mediated breast cancer progression.


Subject(s)
Breast Neoplasms/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Transcription, Genetic/genetics , rho GTP-Binding Proteins/biosynthesis , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , E2F Transcription Factors/genetics , Female , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , HEK293 Cells , Histone Deacetylases/genetics , Humans , Jumonji Domain-Containing Histone Demethylases/biosynthesis , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness/genetics , Neoplasm Transplantation , Promoter Regions, Genetic/genetics , Protein Binding/genetics , RNA Interference , RNA, Messenger/biosynthesis , RNA, Small Interfering , Transplantation, Heterologous , Wound Healing/genetics , rho GTP-Binding Proteins/genetics
15.
Fa Yi Xue Za Zhi ; 30(1): 7-12, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-24804376

ABSTRACT

OBJECTIVE: To observe the changes of relative expression of myocardial various RNAs in rats died of different causes and their relationship with PMI. METHODS: The rat models were established in which the rats were sacrificed by broken neck, asphyxia, and hemorrhagic shock. Total RNAs were extracted from myocardium. The quantitative real time PCR was used to calculate threshold cycle values of RNAs including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin, inducible nitric oxide synthase (iNOS), hypoxia-inducible factor-1 (HIF-1), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and U6 small nuclear RNA (U6 snRNA) and to study the changes of the relative expressions of various indexes with PMI. RESULTS: U6 snRNA with stable expression level could be used as appropriate internal control. In the early PMI, the relative expression of GAPDH, HIF-1, iNOS, TNF-alpha, and IL-6 more characteristically increased in groups of asphyxia and hemorrhagic shock than in group of broken neck, but the quantity of beta-actin decreased in all groups. In the late PMI, all the relative expressions significantly declined in correlation with the degradation of RNA. CONCLUSION: The characteristic changes of each RNA expression can be used as references to estimate PMI in deaths by different causes.


Subject(s)
Cytokines/metabolism , Enzymes/metabolism , Myocardium/metabolism , RNA/metabolism , Actins , Animals , Cause of Death , Disease Models, Animal , Glyceraldehyde-3-Phosphate Dehydrogenases , Nitric Oxide Synthase Type II , RNA, Small Nuclear , Rats , Shock, Hemorrhagic , Tumor Necrosis Factor-alpha
16.
Sci Justice ; 53(2): 115-20, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23601718

ABSTRACT

Precisely determining the postmortem interval (PMI), which is crucial to criminal and forensic cases, is a research in which quantitative RT-PCR (also known as qRT-PCR or real-time RT-PCR) has been used to analyse gene expression levels and data normalisation should be required to eliminate the differences among the samples. Therefore, it is quite necessary to find stable molecular biological markers in PMI determination research. In this study, we compared nine commonly used endogenous markers (containing ACTB, GAPDH, B2M, U6, 18S rRNA, hsa-mir-1, hsa-mir-9, hsa-mir-194-1 and hsa-mir-203) in the 109 human tissue samples obtained from autopsy at the aim of finding stable markers in human tissues with consideration of the impact of parameters (PMI and cause of death). After RNA was extracted from four tissues (heart, brain, kidney, skin), the Ct values of nine endogenous markers were obtained by qRT-PCR and assessed by geNorm software. The results showed that U6, GAPDH and 18S rRNA were the suitable markers in our set of samples in various corpse conditions, that B2M and ACTB were reliable internal controls in heart tissue only, and that microRNAs had such high M values that they should not be chosen for endogenous control genes.


Subject(s)
Brain/metabolism , Gene Expression , Kidney/metabolism , Myocardium/metabolism , Postmortem Changes , Skin/metabolism , Brain/pathology , Forensic Genetics , Genetic Markers , Humans , Kidney/pathology , Myocardium/pathology , Real-Time Polymerase Chain Reaction , Skin/pathology
19.
Chem Biol ; 12(3): 303-11, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15797214

ABSTRACT

Bananins are a class of antiviral compounds with a unique structural signature incorporating a trioxa-adamantane moiety covalently bound to a pyridoxal derivative. Six members of this class of compounds: bananin, iodobananin, vanillinbananin, ansabananin, eubananin, and adeninobananin were synthesized and tested as inhibitors of the SARS Coronavirus (SCV) helicase. Bananin, iodobananin, vanillinbananin, and eubananin were effective inhibitors of the ATPase activity of the SCV helicase with IC50 values in the range 0.5-3 microM. A similar trend, though at slightly higher inhibitor concentrations, was observed for inhibition of the helicase activities, using a FRET-based fluorescent assay. In a cell culture system of SCV, bananin exhibited an EC50 of less than 10 microM and a CC50 of over 300 microM. Kinetics of inhibition are consistent with bananin inhibiting an intracellular process or processes involved in SCV replication.


Subject(s)
Adamantane/analogs & derivatives , Adamantane/pharmacology , DNA Helicases/antagonists & inhibitors , Pyridines/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/enzymology , Virus Replication/drug effects , Adamantane/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cells, Cultured , DNA Helicases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Macaca mulatta , Pyridines/chemistry , Severe acute respiratory syndrome-related coronavirus/physiology , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...