Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Microbiol Res ; 260: 127018, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35405475

ABSTRACT

The bifunctional alcohol/aldehyde dehydrogenase (AdhE), one of the key enzymes in the bacterial ethanol anaerobic fermentation pathway, is critical for appropriate expression of the genes for the utilization of carbon sources. Knowledge about its global roles in modulating gene expression and metabolomics remains limited. Edwardsiella bacteria includes several important zoonotic pathogenic species including Edwardsiella piscicida, a leading fish pathogen that causes severe economic losses in the aquaculture industry. It is well known to utilize few sugars. In this study, we showed that AdhE is involved in various processes including sugar utilization, bacteria growth, intracellular pH homeostasis, type III/VI secretion system (T3/T6SS) production, and survival in fish. Moreover, our unbiased metabolomics approaches revealed that AdhE modulates a large quantity of metabolic pathways, including amino acids, tricarboxylic acid (TCA) intermediates, sugar and fatty acids. Pull-down and Co-immunoprecipitation (IP) analysis revealed that AdhE interacts with the phospho-transferase system component PtsH that supports the transform of its PTS sugars including mannose to mannose-6P, the established metabolic ligand modulating EvrA activity to control T3/T6SS expression. Collectively, AdhE appears to play important roles in bacterial adapting to the internal environment changes by regulating sugar metabolic pathways and bacterial virulence expression. These observations support a model in which AdhE acts a macromolecule hub accommodating proteins to modulate the PTS and other signaling cascades related to pathogenesis and environmental adaptation in bacterial pathogens, which may provide new perspectives for attempts to attenuate bacterial virulence.


Subject(s)
Edwardsiella , Enterobacteriaceae Infections , Type VI Secretion Systems , Alcohol Dehydrogenase/genetics , Aldehyde Dehydrogenase/genetics , Aldehydes , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/veterinary , Ethanol/metabolism , Gene Expression , Gene Expression Regulation, Bacterial , Mannose , Transferases/genetics , Transferases/metabolism , Type VI Secretion Systems/genetics , Virulence/genetics
2.
Appl Microbiol Biotechnol ; 106(5-6): 2063-2077, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35218391

ABSTRACT

Carbohydrate metabolism of bacterial pathogens conducts crucial roles in regulating pathogenesis but the molecular mechanisms by which metabolisms and virulence are been modulated and coordinated remain to be illuminated. Here, we investigated in this regard Edwardsiella piscicida, a notorious zoonotic pathogen previously named E. tarda that could ferment very few PTS sugars including glucose, fructose, mannose, N-acetylglucosamine, and N-acetylgalactosamine. We systematically characterized the roles of each of the predicted 23 components of phosphotransferase system (PTS) with the respective in-frame deletion mutants and defined medium containing specific PTS sugar. In addition, PtsH was identified as the crucial PTS component potentiating the utilization of all the tested PTS sugars. Intriguingly, we also found that PtsH while not Fpr was involved in T3SS gene expression and was essential for the pathogenesis of E. piscicida. To corroborate this, His15 and Ser46, the two established PtsH residues involved in phosphorylation cascade, showed redundant roles in regulating T3SS yields. Moreover, PtsH was shown to facilitate mannose uptake and transform it into mannose-6-phosphate, an allosteric substrate established to activate EvrA to augment bacterial virulence. Collectively, our observations provide new insights into the roles of PTS reciprocally regulating carbohydrate metabolism and virulence gene expression. KEY POINTS: • PTS components' roles for sugar uptake are systematically determined in Edwardsiella piscicida. • PtsH is involved in saccharides uptake and in the regulation of E. piscicida's T3SS expression. • PtsH phosphorylation at His15 and Ser46 is essential for the T3SS expression and virulence.


Subject(s)
Enterobacteriaceae Infections , Type III Secretion Systems , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbohydrate Metabolism , Edwardsiella , Enterobacteriaceae Infections/veterinary , Humans , Type III Secretion Systems/genetics , Virulence
3.
J Cell Biochem ; 119(7): 5082-5103, 2018 07.
Article in English | MEDLINE | ID: mdl-28681936

ABSTRACT

This network meta-analysis is adopted in order to compare the toxicity of different chemotherapy regimens in the treatment of advanced/metastatic pancreatic cancer (PC). Randomized controlled trials (RCTs) about different chemotherapy regimens for advanced/metastatic PC were included in this network meta-analysis using Cochrane Library and PubMed electronic databases. The network meta-analysis was performed to combine direct and indirect evidence in order to calculate the odd ratios (OR) and draw a surface under the cumulative ranking (SUCRA) curve. A total of 19 RCTs were enrolled in this network meta-analysis including 12 chemotherapy regimens (Gemcitabine, Gemcitabine + S-1 [tegafur], Gemcitabine + nab-paclitaxel, Gemcitabine + Capecitabine, Gemcitabine + Cisplatin, FOLFIRINOX [oxaliplatin + irinotecan + fluorouracil + leucovorin], Gemcitabine + oxaliplatin, Gemcitabine + irinotecan, Gemcitabine + Exatecan, Gemcitabine + pemetrexed, Gemcitabine + 5-FU, S-1). The incidence of anemia of Gemcitabine + Capecitabine regimen was higher compared with Gemcitabine regimen, Gemcitabine + pemetrexed regimen exhibited the highest incidence rates of anemia and neutropenia; while Gemcitabine + S-1, Gemcitabine + Cisplatin and FOLFIRINOX regimens exhibited the highest incidence rates of neutropenia. However, S-1 regimen exhibited lower incidence rates of leukopenia and thrombocytopenia. Moreover, the incidence rates of nausea/vomiting and rash of Gemcitabine + S-1 regimen were higher compared with Gemcitabine regimen, while Gemcitabine + Cisplatin regimen had the highest incidence rate of nausea/vomiting. This study demonstrated that the hematologic toxicity of S-1 regimen was the lowest, while Gemcitabine regimen exhibited the lowest incidence rate of non-hematologic toxicity, providing guidance for the treatment of advanced/metastatic PC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Pancreatic Neoplasms/drug therapy , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Fluorouracil/therapeutic use , Humans , Irinotecan/therapeutic use , Leucovorin/therapeutic use , Network Meta-Analysis , Oxaliplatin/therapeutic use , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL