Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Viruses ; 16(3)2024 03 14.
Article in English | MEDLINE | ID: mdl-38543818

ABSTRACT

Porcine rotavirus A (PoRVA) is an enteric pathogen capable of causing severe diarrhea in suckling piglets. Investigating the prevalence and molecular characteristics of PoRVA in the world, including China, is of significance for disease prevention. In 2022, a total of 25,768 samples were collected from 230 farms across China, undergoing porcine RVA positivity testing. The results showed that 86.52% of the pig farms tested positive for porcine RVA, with an overall positive rate of 51.15%. Through the genetic evolution analysis of VP7, VP4 and VP6 genes, it was revealed that G9 is the predominant genotype within the VP7 segment, constituting 56.55%. VP4 genotypes were identified as P[13] (42.22%), P[23] (25.56%) and P[7] (22.22%). VP6 exhibited only two genotypes, namely I5 (88.81%) and I1 (11.19%). The prevailing genotype combination for RVA was determined as G9P[23]I5. Additionally, some RVA strains demonstrated significant homology between VP7, VP4 and VP6 genes and human RV strains, indicating the potential for human RV infection in pigs. Based on complete genome sequencing analysis, a special PoRVA strain, CHN/SD/LYXH2/2022/G4P[6]I1, had high homology with human RV strains, revealing genetic reassortment between human and porcine RV strains in vivo. Our data indicate the high prevalence, major genotypes, and cross-species transmission of porcine RVA in China. Therefore, the continuous monitoring of porcine RVA prevalence is essential, providing valuable insights for virus prevention and control, and supporting the development of candidate vaccines against porcine RVA.


Subject(s)
Rotavirus Infections , Rotavirus , Humans , Animals , Swine , Rotavirus/genetics , Phylogeny , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Rotavirus Infections/genetics , Genome, Viral , Genotype
2.
Sheng Wu Gong Cheng Xue Bao ; 36(2): 372-380, 2020 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-32148009

ABSTRACT

High expression of zearalenone (ZEN) degrading enzyme gene (zlhy-6) in Pichia pastoris strain GS115 was achieved by codon optimization and multi-copy construction in vitro. The codon-optimized zlhy-6 gene sequence was synthesized with the alpha factor signal peptide coding sequence and inserted into the pAO815 plasmid. The expression plasmid containing 1-6 expression cassettes was constructed by enzyme digestion and transferred into P. pastoris GS115 strain to obtain the ZEN degrading enzyme recombinant strain. The molecular weight of the recombinant protein was 28.9 kDa, which was consistent with the theoretical value. After 3 days of induction fermentation, the protein concentration reached the highest level and then decreased; the expression level was the highest in the induction culture at pH 5.0 and 4.5, while the expression level at other pH was very low; the expression level was the highest when 0.8% methanol was added every day and 10% inoculation was added; the expression level of four-copy transformants was the highest, and the enzyme activity reached 10 U/mL after 3 days of flask fermentation, The degradation rate of ZEN in 1 g corn ballast was 44.08%-75.51% when 0.1-0.5 mL fermentation supernatant added and hydrolyzed for 24 hours. The results of this study laid a foundation for improving the industrial fermentation level of ZEN degrading enzyme and its application in eliminating ZEN in food and feed.


Subject(s)
Pichia , Codon , Fermentation , Recombinant Proteins , Zearalenone
3.
J Food Sci Technol ; 52(6): 3803-11, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26028765

ABSTRACT

Subcritical water extraction (SWE) of phenolics was investigated from marigold (Tagetes erecta L.) flower residues. The total phenolics content (TPC), total flavonoids content (TFC) and antioxidant capacities of extracts were determined, furthermore, antioxidant activities of individual compounds were evaluated with on-line HPLC-ABTS(•+) system. The optimum SWE time was 45 min, solid-to-liquid ratio was 1:50, and the highest TPC and TFC were obtained at 220 °C respectively. The effect of SWE temperature on TPC and TFC was significant (p < 0.05), and TPC was ranged from 28.42 ± 0.94 to 124.27 ± 1.94 (mg GAE/g), and TFC ranged from 34.21 ± 0.36 to 133.22 ± 1.57 (mg GAE/g) between 80 and 220 °C. On-line HPLC-ABTS(•+) profiles revealed that quercetagetin from SWE at 200 °C had nearly twofold radical scavenging activities than that by leaching extraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...