Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Braz J Microbiol ; 55(1): 169-177, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38019411

ABSTRACT

Amphiphilic protein has lipophilic and hydrophilic domains, displaying the potential for development as a biosurfactant. The polyhydroxyalkanoate (PHA) surface binding protein derived from Bacillus is a type of protein that has not been studied for its emulsifying properties. In this study, PHA granule-associated protein (PhaP), PHA regulatory protein (PhaQ), and PHA synthase subunit (PhaR) derived from an alkali-tolerant PHA-producing Bacillus cereus HBL-AI were found and heterologously expressed in E. coli and purified to investigate their application as biosurfactants. It showed that the emulsification ability and stability of three amphiphilic proteins were higher than those of widely used chemical surfactants in diesel oil, vegetable oil, and lubricating oil. In particular, the PhaQ protein studied for the first time can form a stable emulsion layer in vegetable oil at a lower concentration (50 µg/mL), which greatly reduced the amount of protein used in emulsification. This clearly demonstrated that the PHA-binding protein of HBL-AI can be well applied as an environmentally friendly biosurfactants.


Subject(s)
Bacillus , Polyhydroxyalkanoates , Polyhydroxyalkanoates/metabolism , Bacillus/genetics , Bacillus/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Membrane Proteins , Surface-Active Agents/metabolism , Escherichia coli/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Appl Biochem Biotechnol ; 195(12): 7553-7567, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37014512

ABSTRACT

An efficient cofactor regeneration system has been developed to provide a hydride source for the preparation of optically pure alcohols by carbonyl reductase-catalyzed asymmetric reduction. This system employed a novel glucose dehydrogenase (BcGDH90) from Bacillus cereus HBL-AI. The gene encoding BcGDH90 was found through the genome-wide functional annotation. Homology-built model study revealed that BcGDH90 was a homo-tetramer, and each subunit was composed of ßD-αE-αF-αG-ßG motif, which was responsible for substrate binding and tetramer formation. The gene of BcGDH90 was cloned and expressed in Escherichia coli. The recombinant BcGDH90 exhibited maximum activity of 45.3 U/mg at pH 9.0 and 40 °C. BcGDH90 showed high stability in a wide pH range of 4.0-10.0 and was stable after the incubation at 55 °C for 5 h. BcGDH90 was not a metal ion-dependent enzyme, but Zn2+ could seriously inhibit its activity. BcGDH90 displayed excellent tolerance to 90% of acetone, methanol, ethanol, n-propanol, and isopropanol. Furthermore, BcGDH90 was applied to regenerate NADPH for the asymmetric biosynthesis of (S)-(+)-1-phenyl-1,2-ethanediol ((S)-PED) from hydroxyacetophenone (2-HAP) with high concentration, which increased the final efficiency by 59.4%. These results suggest that BcGDH90 is potentially useful for coenzyme regeneration in the biological reduction.


Subject(s)
Alcohol Oxidoreductases , Glucose 1-Dehydrogenase , Glucose 1-Dehydrogenase/metabolism , Alcohol Oxidoreductases/metabolism , Alcohols/metabolism , Escherichia coli/metabolism , Solvents/metabolism , Ethylene Glycol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...