Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Sci Rep ; 14(1): 10049, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698008

ABSTRACT

Although some studies have reported on the expression and clinical significance of Fascin-1 (FSCN1) in liver cancer, the clinical application and differential diagnosis value of FSCN1 in liver cancer are still unclear. The aim of this study was to analyze the expression level of FSCN1 protein in liver cancer tissues and explore its diagnostic and application value in differentiating between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). The immunehistochemical analysis was used to detect the expression of FSCN1 in 108 cases of HCC, 26 cases of ICC, 23 cases of liver cirrhosis, and 11 cases of normal liver tissues. The differences in the positive expression rate and strong positive expression rate of FSCN1 among different groups were analyzed. The positive rate of FSCN1 in normal liver tissues, liver cirrhosis, HCC, and ICC tissues was 0.0% (0/11), 0.0% (0/23), 13.9% (15/108), and 92.3% (24/26), respectively, while the strong positive rate was 0.0% (0/11), 0.0% (0/23), 0.9% (1/108), and 69.2% (18/26), respectively. Both the positive rate and strong positive rate of FSCN1 in ICC tissues were significantly higher than those in HCC, liver cirrhosis, and normal liver tissues. Additionally, the positive rate of FSCN1 in moderately to poorly differentiated HCC tissues was 18.8% (15/80), significantly higher than in well-differentiated HCC (0.0%, 0/28) (P = 0.031). In liver cancer, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of FSCN1 positive prediction for ICC were 92.3%, 86.1%, 61.5%, and 97.9%, respectively, whereas the sensitivity, specificity, PPV, and NPV of FSCN1 strong positive prediction for ICC were 69.2%, 99.1%, 94.7%, and 93.0%, respectively. These results suggest that FSCN1 may play an important role in the occurrence and progression of liver cancer, and it can be used as a novel diagnostic marker for ICC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Carrier Proteins , Cholangiocarcinoma , Liver Neoplasms , Microfilament Proteins , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , Microfilament Proteins/metabolism , Carrier Proteins/metabolism , Male , Female , Middle Aged , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/metabolism , Biomarkers, Tumor/metabolism , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/metabolism , Aged , Adult , Liver Cirrhosis/diagnosis , Liver Cirrhosis/metabolism , Diagnosis, Differential , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Sensitivity and Specificity
2.
Microbiol Spectr ; 12(5): e0255823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38526296

ABSTRACT

This study aimed to investigate the prognostic value of a novel droplet digital polymerase chain reaction (DDPCR) assay in sepsis patients. In this prospective cohort study, univariable and multivariable Cox regressions were used to assess risk factors for 28-day mortality. We also monitored pathogen load together with clinical indicators in a subgroup of the cohort. A total of 107 sepsis patients with positive baseline DDPCR results were included. Detection of poly-microorganisms [adjusted hazard ratio (HR) = 3.19; 95% confidence interval (CI) = 1.34-7.62; P = 0.009], high Charlson Comorbidity Index (CCI) score (adjusted HR = 1.14; 95% CI = 1.01-1.29; P = 0.041), and Sequential Organ Failure Assessment (SOFA) score (adjusted HR = 1.18; 95% CI = 1.05-1.32; P = 0.005) at baseline were independent risk factors for 28-day mortality while initial pathogen load was not associated (adjusted HR = 1.17; 95% CI = 0.82-1.66; P = 0.385). Among 63 patients with serial DDPCR results, an increase in pathogen load at days 6-8 compared to baseline was a risk factor for 28-day mortality (P = 0.008). Also, pathogen load kinetics were significantly different between day-28 survivors and nonsurvivors (P = 0.022), with a decline overtime only in survivors and an increase from days 3 and 4 to days 6-8 in nonsurvivors. Using DDPCR technique, we found that poly-microorganisms detected and increased pathogen load a week after sepsis diagnosis were associated with poor prognosis.IMPORTANCEThis prospective study was initiated to explore the prognostic implications of a novel multiplex PCR assay in sepsis. Notably, our study was the largest cohort of sepsis with droplet digital polymerase chain reaction pathogen monitoring to date, allowing for a comprehensive evaluation of the prognostic significance of both pathogen species and load. We found that detection of poly-microorganisms was an independent risk factors for 28-day mortality. Also, pathogen load increase 1 week after sepsis diagnosis was a risk factor for 28-day mortality, and differential pathogen load kinetics were identified between day-28 survivors and nonsurvivors. Overall, this study demonstrated that pathogen species and load were highly correlated with sepsis prognosis. Patients exhibiting conditions mentioned above face a more adverse prognosis, suggesting the potential need for an escalation of antimicrobial therapy.Registered at ClinicalTrials.gov (NCT05190861).


Subject(s)
Polymerase Chain Reaction , Sepsis , Humans , Sepsis/microbiology , Sepsis/mortality , Sepsis/diagnosis , Prospective Studies , Female , Male , Prognosis , Middle Aged , Aged , Polymerase Chain Reaction/methods , Risk Factors , Bacterial Load/methods , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Aged, 80 and over , Kinetics
3.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37917543

ABSTRACT

A novel mesophilic, chemolithoautotrophic, hydrogen-oxidizing bacterium, designated strain ST1-3T, was isolated from mud sediment samples collected from mangroves in Jiulong River estuary. The cells were Gram-stain-negative, non-motile and rod-shaped. The temperature, pH and salinity ranges for growth of strain ST1-3T were 4-45 °C (optimum, 35 °C), pH 5.0-8.5 (optimum, pH 7.0) and 0-8.0 % (w/v) NaCl (optimum, 4.0 %). The isolate was an obligate chemolithoautotroph capable of growth using hydrogen as the only energy source, and molecular oxygen, thiosulphate and elemental sulphur as electron acceptors. The major cellular fatty acids of strain ST1-3T were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c). The major polar lipids were phosphatidylethanolamine, phosphatidyldimethyl ethanolamine and phosphatidylglycerol. The respiratory quinone was menaquinone-6. The genomic DNA G+C content was 43.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and core genes showed that the novel isolate belonged to the genus Sulfurovum and was most closely related to Sulfurovum lithotrophicum 42BKTT (94.7 % sequence identity). The average nucleotide identity and digital DNA-DNA hybridization values between ST1-3T and S. lithotrophicum 42BKTT were 74.6 and 16.3 %, respectively. On the basis of the phenotypic, phylogenetic and genomic data presented here, strain ST1-3T represents a novel species of the genus Sulfurovum, for which the name Sulfurovum mangrovi sp. nov. is proposed, with the type strain ST1-3T (=MCCC M25234T=KCTC 25639T).


Subject(s)
Fatty Acids , Hydrogen , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , Sequence Analysis, DNA , Base Composition , Bacteria/genetics , Geologic Sediments/microbiology , Oxidation-Reduction , Phospholipids/chemistry
4.
Microorganisms ; 11(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37894227

ABSTRACT

Thiomicrorhabdus species, belonging to the family Piscirickettsiaceae in the phylum Pseudomonadotav are usually detected in various sulfur-rich marine environments. However, only a few bacteria of Thiomicrorhabdus have been isolated, and their ecological roles and environmental adaptations still require further understanding. Here, we report a novel strain, XGS-01T, isolated from a coastal sediment, which belongs to genus Thiomicrorhabdus and is most closely related to Thiomicrorhabdus hydrogeniphila MAS2T, with a sequence similarity of 97.8%. Phenotypic characterization showed that XGS-01T is a mesophilic, sulfur-oxidizing, obligate chemolithoautotrophy, with carbon dioxide as its sole carbon source and oxygen as its sole electron acceptor. During thiosulfate oxidation, strain XGS-01T can produce extracellular sulfur of elemental α-S8, as confirmed via scanning electron microscopy and Raman spectromicroscopy. Polyphasic taxonomy results indicate that strain XGS-01T represents a novel species of the genus Thiomicrorhabdus, named Thiomicrorhabdus lithotrophica sp. nov. Genomic analysis confirmed that XGS-01T performed thiosulfate oxidation through a sox multienzyme complex, and harbored fcc and sqr genes for sulfide oxidation. Comparative genomics analysis among five available genomes from Thiomicrorhabdus species revealed that carbon fixation via the oxidation of reduced-sulfur compounds coupled with oxygen reduction is conserved metabolic pathways among members of genus Thiomicrorhabdus.

5.
Antioxidants (Basel) ; 12(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36978876

ABSTRACT

Chemolithoautotrophic Campylobacterota are widespread and predominant in worldwide hydrothermal vents, and they are key players in the turnover of zero-valence sulfur. However, at present, the mechanism of cyclooctasulfur activation and catabolism in Campylobacterota bacteria is not clearly understood. Here, we investigated these processes in a hydrothermal vent isolate named Sulfurovum indicum ST-419. A transcriptome analysis revealed that multiple genes related to biofilm formation were highly expressed during both sulfur oxidation and reduction. Additionally, biofilms containing cells and EPS coated on sulfur particles were observed by SEM, suggesting that biofilm formation may be involved in S0 activation in Sulfurovum species. Meanwhile, several genes encoding the outer membrane proteins of OprD family were also highly expressed, and among them, gene IMZ28_RS00565 exhibited significantly high expressions by 2.53- and 7.63-fold changes under both conditions, respectively, which may play a role in sulfur uptake. However, other mechanisms could be involved in sulfur activation and uptake, as experiments with dialysis bags showed that direct contact between cells and sulfur particles was not mandatory for sulfur reduction activity, whereas cell growth via sulfur oxidation did require direct contact. This indirect reaction could be ascribed to the role of H2S and/or other thiol-containing compounds, such as cysteine and GSH, which could be produced in the culture medium during sulfur reduction. In the periplasm, the sulfur-oxidation-multienzyme complexes soxABXY1Z1 and soxCDY2Z2 are likely responsible for thiosulfate oxidation and S0 oxidation, respectively. In addition, among the four psr gene clusters encoding polysulfide reductases, only psrA3B3C3 was significantly upregulated under the sulfur reduction condition, implying its essential role in sulfur reduction. These results expand our understanding of the interactions of Campylobacterota with the zero-valence sulfur and their adaptability to deep-sea hydrothermal environments.

6.
mSystems ; 8(1): e0095422, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36541763

ABSTRACT

The disproportionation of inorganic sulfur compounds could be widespread in natural habitats, and microorganisms could produce energy to support primary productivity through this catabolism. However, the microorganisms that carry this process out and the catabolic pathways at work remain relatively unstudied. Here, we investigated the bacterial diversity involved in sulfur disproportionation in hydrothermal plumes from Carlsberg Ridge in the northwestern Indian Ocean by enrichment cultures. A bacterial community analysis revealed that bacteria of the genera Sulfurimonas and Sulfurovum, belonging to the phylum Campylobacterota and previously having been characterized as chemolithoautotrophic sulfur oxidizers, were the most dominant members in six enrichment cultures. Subsequent bacterial isolation and physiological studies confirmed that five Sulfurimonas and Sulfurovum isolates could disproportionate thiosulfate and elemental sulfur. The ability to disproportionate sulfur was also demonstrated in several strains of Sulfurimonas and Sulfurovum that were isolated from hydrothermal vents or other natural environments. Dialysis membrane experiments showed that S0 disproportionation did not require the direct contact of cells with bulk sulfur. A comparative genomic analysis showed that Campylobacterota strains did not contain some genes of the Dsr and rDSR pathways (aprAB, dsrAB, dsrC, dsrMKJOP, and qmoABC) that are involved in sulfur disproportionation in some other taxa, suggesting the existence of an unrevealed catabolic pathway for sulfur disproportionation. These findings provide evidence for the catabolic versatility of these Campylobacterota genera, which are widely distributed in chemosynthetic environments, and expand our knowledge of the microbial taxa involved in this reaction of the biogeochemical sulfur cycle in hydrothermal vent environments. IMPORTANCE The phylum Campylobacterota, notably represented by the genera Sulfurimonas and Sulfurovum, is ubiquitous and predominant in deep-sea hydrothermal systems. It is well-known to be the major chemolithoautotrophic sulfur-oxidizing group in these habitats. Herein, we show that the mesophilic predominant chemolithoautotrophs of the genera Sulfurimonas and Sulfurovum could grow via sulfur disproportionation to gain energy. This is the first report of the chemolithoautotrophic disproportionation of thiosulfate and elemental sulfur within the genera Sulfurimonas and Sulfurovum, and this comes in addition to their already known role in the chemolithoautotrophic oxidation of sulfur compounds. Sulfur disproportionation via chemolithoautotrophic Campylobacterota may represent a previously unrecognized primary production process in hydrothermal vent ecosystems.


Subject(s)
Sulfur Compounds , Thiosulfates , Sulfur Compounds/metabolism , Thiosulfates/metabolism , Ecosystem , Seawater/microbiology , Phylogeny , Renal Dialysis , Sulfur/metabolism , Bacteria/genetics
7.
Microbiome ; 10(1): 235, 2022 12 24.
Article in English | MEDLINE | ID: mdl-36566239

ABSTRACT

BACKGROUND: The deep sea harbors many viruses, yet their diversity and interactions with hosts in hydrothermal ecosystems are largely unknown. Here, we analyzed the viral composition, distribution, host preference, and metabolic potential in different habitats of global hydrothermal vents, including vent plumes, background seawater, diffuse fluids, and sediments. RESULTS: From 34 samples collected at eight vent sites, a total of 4662 viral populations (vOTUs) were recovered from the metagenome assemblies, encompassing diverse phylogenetic groups and defining many novel lineages. Apart from the abundant unclassified viruses, tailed phages are most predominant across the global hydrothermal vents, while single-stranded DNA viruses, including Microviridae and small eukaryotic viruses, also constitute a significant part of the viromes. As revealed by protein-sharing network analysis, hydrothermal vent viruses formed many novel genus-level viral clusters and are highly endemic to specific vent sites and habitat types. Only 11% of the vOTUs can be linked to hosts, which are the key microbial taxa of hydrothermal habitats, such as Gammaproteobacteria and Campylobacterota. Intriguingly, vent viromes share some common metabolic features in that they encode auxiliary genes that are extensively involved in the metabolism of carbohydrates, amino acids, cofactors, and vitamins. Specifically, in plume viruses, various auxiliary genes related to methane, nitrogen, and sulfur metabolism were observed, indicating their contribution to host energy conservation. Moreover, the prevalence of sulfur-relay pathway genes indicated the significant role of vent viruses in stabilizing the tRNA structure, which promotes host adaptation to steep environmental gradients. CONCLUSIONS: The deep-sea hydrothermal systems hold untapped viral diversity with novelty. They may affect both vent prokaryotic and eukaryotic communities and modulate host metabolism related to vent adaptability. More explorations are needed to depict global vent virus diversity and its roles in this unique ecosystem. Video Abstract.


Subject(s)
Hydrothermal Vents , Viruses , Ecosystem , Phylogeny , Hydrothermal Vents/microbiology , Viruses/genetics , Viruses/metabolism , Sulfur/metabolism
8.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36269568

ABSTRACT

A novel marine bacterium, designated strain B2T, was isolated from a deep-sea sediment sample collected from the South China Sea. Cells were observed to be Gram-stain negative, motile and rod shaped with a single polar flagellum. B2T could grow at 10-45 °C (optimum, 35 °C), pH 4.5-9.0 (optimum, pH 7.0) and in the presence of 1.0-8.0 % (w/v) NaCl (optimum, 3.0%). The isolate grew chemolithoautotrophically with sulphide, elemental sulphur and thiosulphate as electron donors, carbon dioxide as the sole carbon source, and molecular oxygen as the sole electron acceptor. Molecular hydrogen did not support growth. The predominant fatty acids of B2T were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The results of phylogenetic analysis based on 16S rRNA gene sequence indicated that B2T represented a member of the genus Sulfurimonas, with the highest similarity to the 16S rRNA gene sequences of Sulfurimonas indica NW8NT (95.9 %), Sulfurimonas crateris SN118T (95.7 %), Sulfurimonas xiamenensis 1-1NT (95.6 %) and Sulfurimonas paralvinellae GO25T (95.4 %). Sequence similarities to other members of the genus Sulfurimonas were less than 95.0 %. In addition, the average nucleotide identity (ANI) value and digital DNA-DNA hybridization (dDDH) estimate between B2T and S. indica NW8NT were 73.0 and 23.7 %, respectively. The size of the complete genome of B2T is 22 61 034 bp, with a DNA G+C content of 36.0 mol %. On the basis of the phenotypic, phylogenetic and genomic data presented here, strain B2T represent a novel species of the genus Sulfurimonas, for which the name Sulfurimonas marina sp. nov. is proposed, with the type strain B2T (=MCCC 1A14515T=KCTC 15852T).


Subject(s)
Seawater , Thiosulfates , Bacterial Typing Techniques , Base Composition , Carbon Dioxide , DNA, Bacterial/genetics , Fatty Acids/chemistry , Hydrogen , Nucleotides , Oxidation-Reduction , Oxygen , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Sodium Chloride , Sulfides , Sulfur , Geologic Sediments
9.
BMC Infect Dis ; 22(1): 632, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35858876

ABSTRACT

BACKGROUND: The outbreak of SARS-CoV-2 at the end of 2019 sounded the alarm for early inspection on acute respiratory infection (ARI). However, diagnosis pathway of ARI has still not reached a consensus and its impact on prognosis needs to be further explored. METHODS: ESAR is a multicenter, open-label, randomized controlled, non-inferiority clinical trial on evaluating the diagnosis performance and its impact on prognosis of ARI between mNGS and multiplex PCR. Enrolled patients will be divided into two groups with a ratio of 1:1. Group I will be directly tested by mNGS. Group II will firstly receive multiplex PCR, then mNGS in patients with severe infection if multiplex PCR is negative or inconsistent with clinical manifestations. All patients will be followed up every 7 days for 28 days. The primary endpoint is time to initiate targeted treatment. Secondary endpoints include incidence of significant events (oxygen inhalation, mechanical ventilation, etc.), clinical remission rate, and hospitalization length. A total of 440 participants will be enrolled in both groups. DISCUSSION: ESAR compares the efficacy of different diagnostic strategies and their impact on treatment outcomes in ARI, which is of great significance to make precise diagnosis, balance clinical resources and demands, and ultimately optimize clinical diagnosis pathways and treatment strategies. Trial registration Clinicaltrial.gov, NCT04955756, Registered on July 9th 2021.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Hospitalization , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial , Treatment Outcome
10.
BMC Infect Dis ; 22(1): 630, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35854212

ABSTRACT

BACKGROUND: Sepsis is still a major public health concern and a medical emergency due to its high morbidity and mortality. Accurate and timely etiology diagnosis is crucial for sepsis management. As an emerging rapid and sensitive pathogen detection tool, digital droplet PCR (ddPCR) has shown promising potential in rapid identification of pathogens and antimicrobial resistance genes. However, the diagnostic value and clinical impact of ddPCR tests remains to be studied in patients with suspected sepsis. PROGRESS trial is aimed to evaluate the clinical effectiveness of a novel ddPCR assay compared with standard practice. METHODS: PROGRESS is a multicenter, open-label, pragmatic randomized controlled trial (pRCT) set in ten hospitals, including departments of infectious disease and intensive care units. In this study, a total of 2292 patients with suspected sepsis will be randomly assigned to two arms: the ddPCR group and the control group with a ratio of 3:1. The primary outcome is the diagnostic efficacy, that is, the sensitivity and specificity of the ddPCR assay compared with the synchronous blood culture. Secondary outcomes include the mortality rates and the mean Sequential Organ Failure Assessment (SOFA) score at follow-up time points, the length of stay in the hospital, the time to directed antimicrobial therapy, duration of broad-spectrum antibiotic use, and the EQ-5D-5L score on day 90. DISCUSSION: It is the first multicenter pragmatic RCT to explore the diagnostic efficacy and clinical impact of the ddPCR assay in patients with suspected sepsis, taking advantage of both RCT's ability to establish causality and the feasibility of pragmatic approaches in real-world studies (RWS). This trial will help us to get a comprehensive view of the assay's capacity for precise diagnosis and treatment of sepsis. It has the potential to monitor the pathogen load change and to guide the antimicrobial therapy, making a beneficial impact on the prognosis of sepsis patients. TRIAL REGISTRATION: ClinicalTrial.gov, NCT05190861. Registered January 13, 2022-'Retrospectively registered', https://clinicaltrials.gov/ct2/show/NCT05190861 .


Subject(s)
Sepsis , Humans , Multicenter Studies as Topic , Organ Dysfunction Scores , Polymerase Chain Reaction , Pragmatic Clinical Trials as Topic , Prognosis , Randomized Controlled Trials as Topic , Sepsis/diagnosis , Sepsis/drug therapy , Treatment Outcome
11.
J Inflamm (Lond) ; 19(1): 4, 2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35279129

ABSTRACT

BACKGROUND: It has been reported that hsa_circRNA_100833 (identified as circFADS2) and miR-133a play opposite roles in LPS-induced cell apoptosis, which contributes to the development of sepsis. This study was carried out to explore the interaction between circFADS2 and miR-133a in sepsis. METHODS: Expression of circFADS2 and miR-133a in plasma from both sepsis patients (n=62) and healthy controls (n=62) was studied by RT-qPCR. Pearson's correlation coefficient analysis was utilized to analyze the correlation between circFADS2 and miR-133a levels across plasma samples from sepsis patients. Cell viability and apoptosis, levels of proteins associated with apoptosis (cleaved caspase-3 and cleaved caspase-9), and expression of pro-inflammatory cytokines in LPS-treated HBEpCs were detected by MTT assay, cell apoptosis assay, western blot, and ELISA, respectively. In addition, a dual-luciferase reporter assay was performed to verify the interaction between circFADS2 and miR-133a. RESULTS: CircFADS2 was under-expressed (0.56-fold vs. control) in sepsis, and miR-133a was highly expressed (2.05-fold vs. control) in sepsis. An inverse correlation between circFADS2 and miR-133a was observed across sepsis samples. LPS decreased cell viability, increased cell apoptosis, and elevated productions of tumor necrosis factor (TNF)-α, interleukins (IL)-1ß, IL-6, and IL-8 in HBEpCs in a dose-dependent manner. In addition, circFADS2 was identified as a target gene of miR-133a. The further experiment revealed that circFADS2 overexpression and miR-133a inhibition prominently promoted cell viability (1.71-fold vs. pcDNA3.1; 1.65-fold vs. NC miRNA) and decreased apoptosis of LPS-treated HBEpCs (0.44-fold vs. pcDNA3.1; 0.47-fold vs. NC miRNA). Moreover, circFADS2 knockdown and miR-133a overexpression inhibited viability (0.36-fold vs. pcDNA3.1; 0.37-fold vs. NC miRNA) and increased apoptosis (1.54-fold vs. pcDNA3.1; 1.51-fold vs. NC miRNA) of LPS-treated HBEpCs. Notably, circFADS2 overexpression reduced the effects of miR-133a on LPS-treated HBEpCs. CONCLUSIONS: CircFADS2 is under-expressed in sepsis and may protect lung cells from LPS-induced apoptosis by downregulating miR-133a.

12.
Am J Transl Res ; 13(7): 8221-8227, 2021.
Article in English | MEDLINE | ID: mdl-34377309

ABSTRACT

OBJECTIVE: To explore the effect of comprehensive nursing on negative emotion and prognosis of patients with sepsis. METHODS: As a prospective study, 104 patients with sepsis were randomized into the observation group (n=52) and the control group (n=52). The patients in the control group underwent routine nursing, whereas the patients in the observation group underwent comprehensive nursing care in addition to routine nursing. The level of negative emotions, patients' prognosis, quality of life (QOL), Acute Physiology and Chronic Health Evaluation (APACHE) ll score, clinical indicators, and patient satisfaction with nursing were compared between the two groups. RESULTS: Compared with the control group, the observation group had lower Self-Rating Anxiety Scale score, Self-Rating Depression Scale score, and APACHE ll score (all P<0.001). The scores of physical functioning, general health perceptions, social role functioning, emotional role functioning, and mental health of the observation group were all higher than those of the control group (all P<0.01). The duration of mechanical ventilation, hospitalization expenses, and the length of stay in the Intensive Care Unit (ICU) in the observation group were lower than those in the control group (all P<0.01). Moreover, the observation group had a lower total incidence of shock, multiple organ dysfunction syndrome, and death and higher patient satisfaction with the nursing care than the control group (all P<0.05). CONCLUSION: Comprehensive nursing care can alleviate anxiety and depression in patients with sepsis and can improve the prognosis and QOL of patients. Also, it can shorten the length of stay in the ICU, lower treatment costs, and improve patient satisfaction; all of which can be recommended for clinical application.

13.
Life Sci ; 284: 119466, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-33811893

ABSTRACT

AIMS: Ischemia-reperfusion (I/R)-induced acute kidney injury (AKI) shows high mortality. Hydrogen sulfide (H2S) is essential for regulating kidney function. This study explored the role and mechanism of H2S in I/R-induced AKI. MATERIALS AND METHODS: I/R-induced mouse model and hypoxia/reoxygenation (H/R)-induced HK2 cell model of AKI were established and treated with NaHS (H2S donor), MCC950 (NLRP3 inhibitor) or DL-Propargylglycine (PAG, CSE inhibitor). Serum creatinine (Cr) and blood urea nitrogen (BUN) were measured to evaluate kidney function. The pathological changes of kidney tissues were detected. H2S level and H2S synthetase activity in kidney tissues were detected. Pyroptosis was assessed by pyroptotic cell numbers and pyroptosis-related protein levels determination. HK-2 cell viability and apoptosis were measured. NLRP3 protein level was detected. The role of NLRP3/Caspase-1 was verified in vivo and in vitro after MCC950 or PAG intervention. KEY FINDINGS: I/R-induced mice showed elevated levels of serum Cr and BUN, and obvious pathological changes, including severe tubular dilatation, tubular cell swelling, tubular epithelial cell abscission, tubular cell necrosis and inflammatory cell infiltration. H2S level and H2S synthetase activity were decreased. Increasing the level of H2S by NaHS improved the pathological changes of kidney tissues and limited the number of pyroptotic cells. In vitro, NaHS could reverse H/R-induced cell injury. H2S suppressed cell pyroptosis and kidney injury via inhibiting the NLRP3/Caspase-1 axis. SIGNIFICANCE: We highlighted that H2S prevented cell pyroptosis via suppressing the NLRP3/Caspase-1 axis, thereby inhibiting I/R-induced AKI. These findings may confer novel insights for the clinical management of I/R-induced AKI.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Hydrogen Sulfide/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Reperfusion Injury/complications , Animals , Caspase 1/metabolism , Cell Line , Humans , Kidney/drug effects , Kidney/injuries , Kidney/pathology , Ligases/metabolism , Male , Mice, Inbred C57BL , Pyroptosis/drug effects , Signal Transduction/drug effects
14.
Front Microbiol ; 12: 626705, 2021.
Article in English | MEDLINE | ID: mdl-33717015

ABSTRACT

Bacteria of the genus Sulfurimonas within the class Campylobacteria are predominant in global deep-sea hydrothermal environments and widespread in global oceans. However, only few bacteria of this group have been isolated, and their adaptations for these extreme environments remain poorly understood. Here, we report a novel mesophilic, hydrogen- and sulfur-oxidizing bacterium, strain NW10T, isolated from a deep-sea sulfide chimney of Northwest Indian Ocean.16S rRNA gene sequence analysis showed that strain NW10T was most closely related to the vent species Sulfurimonas paralvinellae GO25T with 95.8% similarity, but ANI and DDH values between two strains were only 19.20 and 24.70%, respectively, indicating that strain NW10 represents a novel species. Phenotypic characterization showed strain NW10T is an obligate chemolithoautotroph utilizing thiosulfate, sulfide, elemental sulfur, or molecular hydrogen as energy sources, and molecular oxygen, nitrate, or elemental sulfur as electron acceptors. Moreover, hydrogen supported a better growth than reduced sulfur compounds. During thiosulfate oxidation, the strain can produce extracellular sulfur of elemental α-S8 with an unknown mechanism. Polyphasic taxonomy results support that strain NW10T represents a novel species of the genus Sulfurimonas, and named as Sulfurimonas hydrogeniphila sp. nov. Genome analyses revealed its diverse energy metabolisms driving carbon fixation via rTCA cycling, including pathways of sulfur/hydrogen oxidation, coupled oxygen/sulfur respiration and denitrification. Comparative analysis of the 11 available genomes from Sulfurimonas species revealed that vent bacteria, compared to marine non-vent strains, possess unique genes encoding Type V Sqr, Group II, and Coo hydrogenase, and are selectively enriched in genes related to signal transduction and inorganic ion transporters. These phenotypic and genotypic features of vent Sulfurimonas may explain their thriving in hydrothermal environments and help to understand the ecological role of Sulfurimonas bacteria in hydrothermal ecosystems.

15.
Antonie Van Leeuwenhoek ; 114(6): 813-822, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33742343

ABSTRACT

A novel marine hydrogen- and sulfur-oxidizing bacterium, designated strain S2-6 T, was isolated from the deep-sea sediment samples at the Longqi hydrothermal system, southwestern Indian Ocean. Cells were Gram-stain-negative, motile, short rods with a single polar flagellum. Growth was observed at 10-45 °C (optimum 33 °C), pH 5.0-8.0 (optimum pH 7.0) and 1.5 to 6.0% (w/v) NaCl with an optimum at 3.0% (w/v). The isolate was an obligate chemolithoautotroph capable of growth using thiosulfate, tetrathionate, elemental sulfur or sodium sulfide as the energy source, and oxygen or nitrate as the sole electron acceptor. When hydrogen was used as the energy source, strain S2-6 T could respire oxygen, nitrate or element sulfur. The major cellular fatty acids of strain S2-6 T were summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0 and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The total size of its genome was 2,320,257 bp and the genomic DNA G + C content was 37.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and core genes showed that the novel isolate belonged to the genus Sulfurimonas and was most closely related to Sulfurimonas paralvinellae GO25T (96.8% sequence identity) and Sulfurimonas autotrophica OK10T (95.8% sequence identity). The average nucleotide identity and DNA-DNA hybridization values between strain S2-6 T and S. paralvinellae GO25T and S. autotrophica OK10T were 74.6%-81.2% and 19.1%-24.6%, respectively. Based on the polyphase taxonomical data, strain S2-6 T represents a novel species of the genus Sulfurimonas, for which the name Sulfurimonas sediminis sp. nov. is proposed, with the type strain S2-6 T (= MCCC 1A14513T = KCTC 15854 T).


Subject(s)
Hydrothermal Vents , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Helicobacteraceae , Hydrogen , Indian Ocean , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater , Sequence Analysis, DNA , Sulfur
16.
Molecules ; 26(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652957

ABSTRACT

Multidrug resistance (MDR) remains a major problem in cancer therapy and is characterized by the overexpression of p-glycoprotein (P-gp) efflux pump, upregulation of anti-apoptotic proteins or downregulation of pro-apoptotic proteins. In this study, an Apolipoprotein A1 (ApoA1)-modified cationic liposome containing a synthetic cationic lipid and cholesterol was developed for the delivery of a small-molecule chemotherapeutic drug, doxorubicin (Dox) to treat MDR tumor. The liposome-modified by ApoA1 was found to promote drug uptake and elicit better therapeutic effects than free Dox and liposome in MCF-7/ADR cells. Further, loading Dox into the present ApoA1-liposome systems enabled a burst release at the tumor location, resulting in enhanced anti-tumor effects and reduced off-target effects. More importantly, ApoA1-lip/Dox caused fewer adverse effects on cardiac function and other organs in 4T1 subcutaneous xenograft models. These features indicate that the designed liposomes represent a promising strategy for the reversal of MDR in cancer treatment.


Subject(s)
Apolipoprotein A-I/chemistry , Breast Neoplasms/drug therapy , Doxorubicin/analogs & derivatives , Apolipoprotein A-I/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Resistance, Multiple , Drug Resistance, Neoplasm/genetics , Female , Humans , MCF-7 Cells , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology
17.
Inflamm Res ; 70(2): 205-216, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33386874

ABSTRACT

OBJECTIVE: Emerging evidence has revealed that exosomal microRNAs (miRNAs) are implicated in human diseases. However, role of exosomal miR-125b-5p in sepsis-induced acute lung injury (ALI) remains further explored. We focused on the effect of exosomal miR-125b-5p on ALI progression via targeting topoisomerase II alpha (TOP2A). METHODS: The ALI mouse models were established by cecal ligation and perforation, which were then treated with miR-125b-5p agomir or overexpressed TOP2A. Next, the pathological structure of ALI mouse lung tissues were observed, miR-125b-5p, TOP2A and vascular endothelial growth factor (VEGF) expression was determined, and the lung water content, inflammatory response, protein content in bronchoalveolar lavage fluid (BALF) and cell apoptosis in ALI mouse lung tissues were assessed. Exosomes were extracted from endothelial cells (ECs) and identified, which were then injected into the modeled mice to observe their roles in ALI. The targeting relationship between miR-125b-5p and TOP2A was confirmed. RESULTS: MiR-125b-5p was downregulated while TOP2A was upregulated in ALI mice. MiR-125b-5p elevation or ECs-derived exosomes promoted VEGF expression, improved pathological changes and restrained lung water content, inflammatory response, protein content in BALF and cell apoptosis in lung tissues ALI mice. TOP2A overexpression reversed the repressive role of miR-125b-5p upregulation in ALI, while downregulated miR-125b-5p abrogated the effect of ECs-derived exosomes on ALI. TOP2A was confirmed as a direct target gene of miR-125b-5p. CONCLUSION: Our study indicates that ECs-derived exosomes overexpressed miR-125b-5p to protect from sepsis-induced ALI by inhibiting TOP2A, which may contribute to ALI therapeutic strategies.


Subject(s)
Acute Lung Injury/genetics , DNA Topoisomerases, Type II/genetics , Endothelial Cells , Exosomes , MicroRNAs , Sepsis/genetics , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cell Line , Cytokines/metabolism , DNA Topoisomerases, Type II/metabolism , Down-Regulation , Female , Lung/metabolism , Lung/pathology , Male , Mice, Inbred BALB C , Sepsis/complications , Sepsis/metabolism , Sepsis/pathology , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism
18.
Article in English | MEDLINE | ID: mdl-33502307

ABSTRACT

Two novel Gram-strain-negative and rod-shaped bacteria, designated strain G1T and G2T, were isolated from sediment samples collected from the coast of Xiamen, PR China. The cells were motile by a single polar flagellum. Growth of strain G1T occurred at 10-40 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 7.5) and with 5-1530 mM NaCl (optimum, 510 mM), while the temperature, pH and NaCl concentration ranges for G2T were 4-45 °C (optimum, 28 °C), pH 5.5-8.0 (optimum, pH 6.5) and 85-1530 mM NaCl (optimum, 340 mM). The two isolates were obligate chemolithoautotrophs capable of using thiosulfate, sulfide, elemental sulphur or tetrathionate as an energy source. Strain G1T used molecular oxygen or nitrite as an electron acceptor, while strain G2T used molecular oxygen as the sole electron acceptor. The dominant fatty acids of G1T and G2T were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16 : 0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The DNA G+C content of G1T and G2T were 45.1 and 48.3 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain G1T and G2T were members of the genus Thiomicrorhabdus, and most closely related to Thiomicrorhabdus hydrogeniphila MAS2T (96.0 %) and Thiomicrorhabdus indica 13-15AT (95.4 %), respectively. The 16S rRNA gene sequence similarity between strains G1T and G2T was 95.8 %. Based on the phylogenetic, genomic and phenotypic data presented here, the isolate strains represent novel species of the genus Thiomicrorhabdus, for which the names Thiomicrorhabdus sediminis sp. nov. (type strain G1T=MCCC 1A14511T=KCTC 15841T) and Thiomicrorhabdus xiamenensis sp. nov. (type strain G2T=MCCC 1A14512T=KCTC 15842T) are proposed.


Subject(s)
Geologic Sediments/microbiology , Phylogeny , Piscirickettsiaceae/classification , Seawater/microbiology , Sulfur-Reducing Bacteria/classification , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Oxidation-Reduction , Phospholipids/chemistry , Piscirickettsiaceae/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur , Sulfur-Reducing Bacteria/isolation & purification
19.
Environ Microbiol ; 23(2): 965-979, 2021 02.
Article in English | MEDLINE | ID: mdl-32974951

ABSTRACT

Sulfurimonas species (class Campylobacteria, phylum Campylobacterota) were globally distributed and especially predominant in deep-sea hydrothermal environments. They were previously identified as chemolithoautotrophic sulfur-oxidizing bacteria (SOB), whereas little is known about their potential in sulfur reduction. In this report, we found that the elemental sulfur reduction is quite common in different species of genus Sulfurimonas. To gain insights into the sulfur reduction mechanism, growth tests, morphology observation, as well as genomic and transcriptomic analyses were performed on a deep-sea hydrothermal vent bacterium Sulfurimonas sp. NW10. Scanning electron micrographs and dialysis tubing tests confirmed that elemental sulfur reduction occurred without direct contact of cells with sulfur particles while direct access strongly promoted bacterial growth. Furthermore, we demonstrated that most species of Sulfurimonas probably employ both periplasmic and cytoplasmic polysulfide reductases, encoded by genes psrA1 B1 CDE and psrA2 B2 , respectively, to accomplish cyclooctasulfur reduction. This is the first report showing two different sulfur reduction pathways coupled to different energy conservations could coexist in one sulfur-reducing microorganism, and demonstrates that most bacteria of Sulfurimonas could employ both periplasmic and cytoplasmic polysulfide reductases to perform cyclooctasulfur reduction. The capability of sulfur reduction coupling with hydrogen oxidation may partially explain the prevalenceof Sulfurimonas in deep-sea hydrothermal vent environments.


Subject(s)
Helicobacteraceae/metabolism , Hydrothermal Vents/microbiology , Sulfur/metabolism , Chemoautotrophic Growth , DNA, Bacterial/genetics , Helicobacteraceae/classification , Helicobacteraceae/genetics , Helicobacteraceae/isolation & purification , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology
20.
Article in English | MEDLINE | ID: mdl-33263512

ABSTRACT

A novel mesophilic, hydrogen- and sulfur-oxidizing bacterium, designated strain NW8NT, was collected from a sulfide chimney at the deep-sea hydrothermal vent on the Carlsberg Ridge of the Northwest Indian Ocean. The cells were Gram-stain-negative, motile, short rods with a single polar flagellum. The temperature, pH and salinity ranges for growth of strain NW8NT were 4-40 °C (optimum, 33 °C), pH 4.5-7.5 (optimum, pH 5.5) and 340-680 mM NaCl (optimum, 510 mM). The isolate was an obligate chemolithoautotroph capable of growth using hydrogen, thiosulfate, sulfide or elemental sulphur as the sole energy source, carbon dioxide as the sole carbon source and molecular oxygen as the sole electron acceptor. The major cellular fatty acids of strain NW8NT were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The total size of its genome was 2 093 492 bp and the genomic DNA G+C content was 36.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and core genes showed that the novel isolate belonged to the genus Sulfurimonas and was most closely related to Sulfurimonas paralvinellae GO25T (97.4 % sequence identity). The average nucleotide identity and DNA-DNAhybridization values between strain NW8NT and S. paralvinellae GO25T was 77.8 and 21.1 %, respectively. Based on the phylogenetic, genomic and phenotypic data presented here, strain NW8NT represents a novel species of the genus Sulfurimonas, for which the name Sulfurimonas indica sp. nov. is proposed, with the type strain NW8NT (=MCCC 1A13988T=KTCC 15780T).


Subject(s)
Helicobacteraceae/classification , Hydrothermal Vents/microbiology , Phylogeny , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Helicobacteraceae/isolation & purification , Hydrogen , Indian Ocean , Nucleic Acid Hybridization , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfides , Sulfur , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/isolation & purification , Thiosulfates
SELECTION OF CITATIONS
SEARCH DETAIL
...