Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(15): 10785-10797, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573588

ABSTRACT

The anti-Stokes shift represents the capacity of photon upconversion to convert low-energy photons to high-energy photons. Although triplet exciton-mediated photon upconversion presents outstanding performance in solar energy harvesting, photoredox catalysis, stereoscopic 3D printing, and disease therapeutics, the interfacial multistep triplet exciton transfer leads to exciton energy loss to suppress the anti-Stokes shift. Here, we report near infrared-II (NIR-II) excitable triplet exciton-mediated photon upconversion using a hybrid photosensitizer consisting of lead sulfide quantum dots (PbS QDs) and new surface ligands of thiophene-substituted diketopyrrolopyrrole (Th-DPP). Under 1064 nm excitation, this photon upconversion revealed a record-corrected upconversion efficiency of 0.37% (normalized to 100%), with the anti-Stokes shift (1.07 eV) approaching the theoretical limit (1.17 eV). The observation of this unexpected result is due to our discovery of the presence of a weak interaction between the sulfur atom on Th-DPP and Pb2+ on the PbS QDs surface, facilitating electronic coupling between PbS QDs and Th-DPP, such that the realization of triplet exciton transfer efficiency is close to 100% even when the energy gap is as small as 0.04 eV. With this premise, this photon upconversion as a photocatalyst enables the production of standing organic gel via photopolymerization under 1064 nm illumination, displaying NIR-II photon-driven photoredox catalysis. This research not only establishes the foundation for enhancing the performance of NIR-II excitable photonic upconversion but also promotes its development in photonics and photoredox catalysis.

2.
ACS Appl Mater Interfaces ; 16(6): 7512-7521, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38318769

ABSTRACT

Near-infrared light excitable triplet-triplet annihilation upconversion (NIR TTA-UC) materials have attracted interest in a variety of emerging applications such as photoredox catalysis, optogenetics, and stereoscopic 3D printing. Currently, the practical application of NIR TTA-UC materials requires substantial improvement in photostability. Here, we found that the new annihilator of π-expanded diketopyrrolopyrrole (π-DPP) cannot activate oxygen to generate superoxide anion via photoinduced electron transfer, and its electron-deficient characteristics prevent the singlet oxygen-mediated [2 + 2] cycloaddition reaction; thus, π-DPP exhibited superior resistance to photobleaching. In conjunction with the NIR photosensitizer PdTNP, the upconversion efficiency of π-DPP is as high as 8.9%, which is eight times of the previously reported PdPc/Furan-DPP. Importantly, after polystyrene film encapsulation, less than 10% photobleaching was observed for this PdTNP/π-DPP-based NIR TTA-UC material after four hours of intensive NIR light exposure. These findings provide a type of annihilator with extraordinary photostability, facilitating the development of NIR TTA-UC materials for practical photonics.

3.
Adv Mater ; 36(2): e2306808, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37732588

ABSTRACT

The plasma membranes (PM) of mammalian cells contain diverse lipids, proteins, and carbohydrates that are important for systemic recognition and communication in health and disease. Cell membrane coating technology that imparts unique properties of natural plasma membranes to the surface of encapsulated nanoparticles is thus becoming a powerful platform for drug delivery, immunomodulation, and vaccination. However, current coating methods fail to take full advantage of the natural systems because they disrupt the complex and functionally essential features of PMs, most notably the chemical diversity and compositional differences of lipids in two leaflets of the PM. Herein, a new lipid coating approach is reported in which the lipid composition is optimized through a combination of biomimetic and systematic variation approaches for the custom design of nanocarrier systems for precision drug delivery. Nanocarriers coated with the optimized lipids offer unique advantages in terms of bioavailability and efficiency in tumor targeting, tumor penetration, cellular uptake, and drug release. This pilot study provides new insight into the rational design and optimization of nanocarriers for cancer chemotherapeutic drugs and lays the foundation for further customization of cell membrane-mimicking nanocarriers through systematic incorporation of other components.


Subject(s)
Nanoparticles , Neoplasms , Animals , Cell Membrane/metabolism , Drug Carriers/chemistry , Drug Delivery Systems , Lipids/chemistry , Mammals , Nanoparticles/chemistry , Neoplasms/drug therapy , Pilot Projects , Humans
4.
J Chem Phys ; 159(6)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37551805

ABSTRACT

Clusters are considered to become increasingly significant for elaborating the nanocrystal's formation mechanism. However, capturing the clusters with high chemical potential is challenging because of the lack of effective strategies. In this work, the key role of ligand-solvent interaction has been revealed for the stabilization of clusters in silver telluride synthesis. The Flory interaction coefficient that comprehensively regards the temperature and dispersion, polarity, and hydrogen bonding of the solvent has been used to evaluate the ligand-solvent interaction and thus assist in the design of synthetic systems. Small silver telluride clusters have been successfully captured, and the composition of the smallest cluster is determined as Ag7Te8(SCy)2 (SCy represents the ligand). This work provides new insights into the design of cluster/nanocrystal synthesis systems and paves the way to revealing the mechanism of precursor-cluster-nanocrystal conversion.

5.
Angew Chem Int Ed Engl ; 62(25): e202217230, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37082873

ABSTRACT

Real-time visualization of individual viral mRNA translation activities in live cells is essential to obtain critical details of viral mRNA dynamics and to detect its transient responses to environmental stress. Fluorogenic RNA aptamers are powerful tools for real-time imaging of mRNA in live cells, but monitoring the translation activity of individual mRNAs remains a challenge due to their intrinsic photophysical properties. Here, we develop a genetically encoded turn-on 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding RNA nanozipper with superior brightness and high photostability by in situ self-assembly of multiple nanozippers along single mRNAs. The nanozipper enables real-time imaging of the mobility and dynamic translation of individual viral mRNAs in live cells, providing information on the spatial dynamics and translational elongation rate of viral mRNAs.


Subject(s)
Protein Biosynthesis , RNA , RNA/chemistry , RNA, Messenger/metabolism , Diagnostic Imaging , RNA, Viral/genetics
6.
Nat Commun ; 14(1): 1102, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36843133

ABSTRACT

Selective photoactivation of inert aryl halides is a fundamental challenge in organic synthesis. Specially, the long-wavelength red light is more desirable than the widely-applied blue light as the excitation source for photoredox catalysis, due to its superior penetration depth. However, the long-wavelength red light-driven photoactivation of inert aryl halides remains a challenge, mainly because of the low energy of the single long-wavelength red photon. Herein, we report the photoreduction of aryl bromides/chlorides with 656 nm LED via triplet-triplet annihilation (TTA) strategy. This method is based on our discovery that the commonly used chromophore of perylene can serve as an efficient and metal-free photocatalyst to enable the photoreduction of inert aryl halides without the conventional need for electronic sacrificial agents. By introducing a red light-absorbing photosensitizer to this perylene system, we accomplish the long-wavelength red light-driven photoreduction of aryl halides via sensitized TTA mechanism. Moreover, the performance of such a TTA-mediated photoreduction can be significantly enhanced when restricting the rotation freedom of phenyl moiety for perylene derivatives to suppress their triplet nonradiative transition, in both small and large-scale reaction settings.

7.
Angew Chem Int Ed Engl ; 62(11): e202218341, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36634030

ABSTRACT

Metal-free long-wavelength light-driven prodrug photoactivation is highly desirable for applications such as neuromodulation, drug delivery, and cancer therapy. Herein, via triplet fusion, we report on the far-red light-driven photo-release of an anti-cancer drug by coupling the boron-dipyrromethene (BODIPY)-based photosensitizer with a photocleavable perylene-based anti-cancer drug. Notably, this metal-free triplet fusion photolysis (TFP) strategy can be further advanced by incorporating an additional functional dopant, i.e. an immunotherapy medicine inhibiting the indoleamine 2,3-dioxygenase (IDO), with the far-red responsive triplet fusion pair in an air-stable nanoparticle. With this IDO inhibitor-assisted TFP system we observed efficient inhibition of primary and distant tumors in a mouse model at record-low excitation power, compared to other photo-assisted immunotherapy approaches. This metal-free TFP strategy will spur advancement in photonics and biophotonics fields.


Subject(s)
Antineoplastic Agents , Immune Checkpoint Inhibitors , Animals , Mice , Photolysis , Light , Immunotherapy , Indoleamine-Pyrrole 2,3,-Dioxygenase
SELECTION OF CITATIONS
SEARCH DETAIL
...