Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(3): 1323-1331, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35037455

ABSTRACT

As an aberrant base in DNA, uracil is generated by either deoxyuridine (dU) misincorporation or cytosine deamination, and involved in multiple physiological and pathological processes. Genome-wide profiles of uracil are important for study of these processes. Current methods for whole-genome mapping of uracil all rely on uracil-DNA N-glycosylase (UNG) and are limited in resolution, specificity, and/or sensitivity. Here, we developed a UdgX cross-linking and polymerase stalling sequencing ("Ucaps-seq") method to detect dU at single-nucleotide resolution. First, the specificity of Ucaps-seq was confirmed on synthetic DNA. Then the effectiveness of the approach was verified on two genomes from different sources. Ucaps-seq not only identified the enrichment of dU at dT sites in pemetrexed-treated cancer cells with globally elevated uracil but also detected dU at dC sites within the "WRC" motif in activated B cells which have increased dU in specific regions. Finally, Ucaps-seq was utilized to detect dU introduced by the cytosine base editor (nCas9-APOBEC) and identified a novel off-target site in cellular context. In conclusion, Ucaps-seq is a powerful tool with many potential applications, especially in evaluation of base editing fidelity.


Subject(s)
Nucleotides
2.
J Cell Mol Med ; 25(23): 10879-10891, 2021 12.
Article in English | MEDLINE | ID: mdl-34716659

ABSTRACT

N6 -methyladenosine (m6 A) is the most prevalent modification in mRNA and engages in multiple biological processes. Previous studies indicated that m6 A methyltransferase METTL3 ('writer') and demethylase FTO ('eraser') play critical roles in heart-related disease. However, in the heart, the function of m6 A 'reader', such as YTH (YT521-B homology) domain-containing proteins remains unclear. Here, we report that the defect in YTHDC1 but not other YTH family members contributes to dilated cardiomyopathy (DCM) in mice. Cardiac-specific conditional Ythdc1 knockout led to obvious left ventricular chamber enlargement and severe systolic dysfunction. YTHDC1 deficiency also resulted in the decrease of cardiomyocyte contractility and disordered sarcomere arrangement. By means of integrating multiple high-throughput sequence technologies, including m6 A-MeRIP, RIP-seq and mRNA-seq, we identified 42 transcripts as potential downstream targets of YTHDC1. Amongst them, we found that Titin mRNA was decorated with m6 A modification and depletion of YTHDC1 resulted in aberrant splicing of Titin. Our study suggests that Ythdc1 plays crucial role in regulating the normal contractile function and the development of DCM. These findings clarify the essential role of m6 A reader in cardiac biofunction and provide a novel potential target for the treatment of DCM.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Methyltransferases/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinases/metabolism , RNA Splicing Factors/metabolism , Adenosine/metabolism , Animals , Connectin/metabolism , Male , Mice , RNA-Binding Proteins/metabolism , Serine-Arginine Splicing Factors/metabolism
3.
Biochem Biophys Res Commun ; 510(1): 97-103, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30661787

ABSTRACT

SRPIN340, a selective serine-arginine protein kinase 1/2 (SRPK1/2) inhibitor, has been shown to have antiviral and anti-angiogenesis effects. However, its role in the heart is unknown. The present study explored the role of SRPIN340 in myocardial protection and the related mechanisms. During challenge with H2O2, cardiomyocytes (CMs) pretreated with SRPIN340 showed strikingly more injury tolerance, which was manifested as reduced lactate dehydrogenase (LDH) release and lower apoptotic index. Further research showed that SRPIN340 activated AKT under basal conditions, and AKT inhibition abolished the protective effects of SRPIN340 treatment during H2O2 stress. The protective effect of SRPIN340 was also demonstrated in perfused rat hearts subjected to ischemia/reperfusion (I/R). Collectively, our results reveal the beneficial effects of SRPIN340 against H2O2-induced oxidative damage in CMs and I/R-induced injury in a Langendorff heart model, supporting a potential application of SRPIN340 in the clinically relevant context of reperfusion. The effectiveness of SRPIN340 may be attributed to AKT signal activation.


Subject(s)
Myocardium , Niacinamide/analogs & derivatives , Oxidative Stress/drug effects , Piperidines/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Heart/drug effects , Hydrogen Peroxide/pharmacology , Myocardial Reperfusion Injury/prevention & control , Niacinamide/pharmacology , Niacinamide/therapeutic use , Piperidines/therapeutic use , Protective Agents/pharmacology , Protective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...