Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Anal Methods ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775028

ABSTRACT

To develop a sensitive and simple ampicillin (AMP) sensor for trace antibiotic residue detection, the influencing factors of the modification effect of nanogold-functionalized nucleic acid sequences (Adenine: A, Thymine: T) were comprehensively analyzed in this study, including the modification method, base length and type. It was found that under the same base concentration, longer chains are more likely to reach saturation than shorter chains; and when the base concentration and length are both the same, A exhibits a higher saturation modification level compared to T. Based on these research findings, a highly sensitive fluorescence aptamer sensor for detecting ampicillin was constructed using the optimized functionalized sequence (ployA6-aptamer) and experimental conditions (6 hours binding time between nucleic acid aptamer and complementary strand, pH 7 working solution, 20 minutes detection time) based on the principle of fluorescence resonance energy transfer. The sensor has a detection range of 0.18 ng ml-1 to 3.11 ng ml-1 for ampicillin, with a detection limit of 0.04 ng ml-1. It exhibits significant selectivity and achieves an average recovery rate of 98.71% in tap water and 91.83% in milk. This method can be used not only for residual ampicillin detection, but also for highly sensitive detection of various antibiotics and small biological molecules by replacing the aptamer type. It provides a research basis for the design of highly sensitive fluorescence aptamer sensors and further applications of nanogold@DNA composite structures.

2.
Small ; : e2312218, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716754

ABSTRACT

Room-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices. Remarkably, the phosphorescence lifetime of the thermally enhanced CND exhibits a twofold enhancement, increasing from 326 to 753 ms, while the phosphorescence intensity experienced a tenfold enhancement, increasing from 25 to 245 as the temperature increased to 373 K. Rigid fiber matrices can effectively suppress the non-radiative transition rate of triplet excitons, while high temperatures can desorb oxygen adsorbed on the surface of the CND, disrupting the interaction between the CND and oxygen. Consequently, a thermally enhanced phosphorescence is obtained. In addition, benefiting from the thermally enhanced phosphorescence property of CND, a warning indicator with an anti-counterfeiting function for monitoring cold-chain logistics is demonstrated based on CND.

3.
ACS Appl Mater Interfaces ; 16(20): 26643-26652, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716902

ABSTRACT

A scene that contains both old and instant events with a clear motion trail is visually intriguing and dynamic, which can convey a sense of change, transition, or evolution. Developing an eco-friendly delay display system offers a powerful tool for fusing old and instant events, which can be used for visualizing motion trails. Herein, we brighten triplet excitons of carbon nanodots (CNDs) and increase their emission yield by a multidimensional confinement strategy, and the CND-based delay display array is demonstrated. The intense confinement effects via multidimensional confinement strategy suppress nonradiative transitions, and 240% enhancement in the phosphorescence efficiency and 260% enhancement in the lifetime of the CNDs are thus realized. Considering their distinctive phosphorescence performances, a delay display array containing a 4 × 4 CND-based delay lighting device is demonstrated, which can provide ultralong phosphorescence over 7 s, and the motion that occurred in different timelines is recorded clearly. This finding will motivate the investigation of phosphorescent CNDs in motion trail recognition.

4.
Front Neurorobot ; 18: 1387428, 2024.
Article in English | MEDLINE | ID: mdl-38765872

ABSTRACT

The tactile object recognition (TOR) is highly important for environmental perception of robots. The previous works usually utilize single scale convolution which cannot simultaneously extract local and global spatiotemporal features of tactile data, which leads to low accuracy in TOR task. To address above problem, this article proposes a local and global residual (LGR-18) network which is mainly consisted of multiple local and global convolution (LGC) blocks. An LGC block contains two pairs of local convolution (LC) and global convolution (GC) modules. The LC module mainly utilizes a temporal shift operation and a 2D convolution layer to extract local spatiotemporal features. The GC module extracts global spatiotemporal features by fusing multiple 1D and 2D convolutions which can expand the receptive field in temporal and spatial dimensions. Consequently, our LGR-18 network can extract local-global spatiotemporal features without using 3D convolutions which usually require a large number of parameters. The effectiveness of LC module, GC module and LGC block is verified by ablation studies. Quantitative comparisons with state-of-the-art methods reveal the excellent capability of our method.

5.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732554

ABSTRACT

BACKGROUND: Overconsumption of sodium has been identified as a key driving factor for diet-related cardiovascular diseases (CVDs). China, being a country bearing a hefty burden of CVD, has a large population with diverse cultural traditions and ethnic beliefs, which complicates the patterns of dietary sodium intake, necessitating a systematic investigation into the profile of the high sodium intake (HSI)-related burden of CVD within its subregions. This study aims to estimate the evolving patterns of HSI-induced CVD burden across China from 1990 to 2019. METHODS: The methodology used in the Global Burden of Disease Study was followed to assess deaths and disability-adjusted life years (DALYs) by age, sex, region, and socio-demographic index (SDI). The estimated annual percentage change (EAPC) was calculated to quantify the secular changes in the age-standardized mortality rate (ASMR) and age-standardized DALY rate (ASDR). RESULTS: In 2019, 0.79 million deaths and 1.93 million DALYs of CVD were attributed to HSI, an increase of 53.91% and 39.39% since 1990, respectively. Nevertheless, a downward trend in ASMR (EAPC: -1.45, 95% CI: -1.55, -1.35) and ASDR (EAPC: -1.61, 95% CI: -1.68, -1.53) was detected over time. ASMR and ASDR were higher for males, individuals aged ≥60 years, and regions with low-middle SDI. A markedly negative association between the EAPC in both ASMR and ASDR and the SDI was found in 2019 (ρ = -0.659, p < 0.001 and ρ = -0.558, p < 0.001, respectively). CONCLUSIONS: The HSI-induced CVD burden is gender-, age-, and socioeconomic-dependent. Integrated and targeted strategies for CVD prevention are anticipated in the future throughout China.


Subject(s)
Cardiovascular Diseases , Sodium, Dietary , Humans , Cardiovascular Diseases/mortality , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , China/epidemiology , Male , Female , Middle Aged , Longitudinal Studies , Aged , Adult , Sodium, Dietary/adverse effects , Sodium, Dietary/administration & dosage , Aged, 80 and over , Young Adult , Disability-Adjusted Life Years/trends , Cost of Illness , Adolescent , Risk Factors
6.
Biomimetics (Basel) ; 9(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38248615

ABSTRACT

The essence of biomimetics in human-computer interaction (HCI) is the inspiration derived from natural systems to drive innovations in modern-day technologies. With this in mind, this paper introduces a biomimetic adaptive pure pursuit (A-PP) algorithm tailored for the four-wheel differential drive robot (FWDDR). Drawing inspiration from the intricate natural motions subjected to constraints, the FWDDR's kinematic model mirrors non-holonomic constraints found in biological entities. Recognizing the limitations of traditional pure pursuit (PP) algorithms, which often mimic a static behavioral approach, our proposed A-PP algorithm infuses adaptive techniques observed in nature. Integrated with a quadratic polynomial, this algorithm introduces adaptability in both lateral and longitudinal dimensions. Experimental validations demonstrate that our biomimetically inspired A-PP approach achieves superior path-following accuracy, mirroring the efficiency and fluidity seen in natural organisms.

7.
Altern Ther Health Med ; 30(1): 88-93, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37820682

ABSTRACT

Objective: This study aimed to analyze the therapeutic efficacy of a combined treatment approach involving specialized head scraping (Guasha) in conjunction with Kaitianmen to manage insomnia. Methods: We conducted a study involving 90 individuals with insomnia who received treatment at our hospital between March 2022 and March 2023. These participants were selected and randomly assigned to either a research group (n = 45) or a control group (n = 45). The control group received oral Diazepam (DZ), while the research group underwent specialized head scraping and Kaitianmen therapy. Comparative assessments were made between the two groups, considering clinical efficacy, pre-and post-treatment Traditional Chinese Medicine (TCM) symptom scores, as well as evaluations of sleep quality and negative emotions (NEs) using the Pittsburgh Sleep Quality Index (PSQI) and Self-rating Anxiety/Depression Scale (SAS/SDS), respectively. Additionally, a treatment satisfaction survey was administered at discharge. Results: The research group exhibited a significantly higher overall response rate compared to the control group (P < .05). Both groups displayed substantial reductions in TCM symptom scores, PSQI scores, and SAS/SDS scores following treatment, with the research group achieving even lower scores (P < .05). The treatment satisfaction survey indicated a greater degree of satisfaction among participants in the research group compared to the control group (P < .05). Conclusions: The combination of specialized head scraping and Kaitianmen therapy has demonstrated effectiveness in the treatment of insomnia and offers a valid means of alleviating patients' negative emotions. These findings suggest promising prospects for clinical applications.


Subject(s)
Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/drug therapy , Medicine, Chinese Traditional , Treatment Outcome , Surveys and Questionnaires
8.
Nutrients ; 15(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38140347

ABSTRACT

BACKGROUNDS: Excessive intake of sodium is a crucial risk factor of gastric cancer. However, it is still unclear whether the profile of gastric cancer burden is attributable to high sodium intake in China. This study aims to evaluate the levels and trends of gastric cancer burden attributable to high sodium intake across China from 1990 to 2019. METHODS: We acquired data from the GBD (Global Burden of Disease Study) 2019 via the Global Health Data Exchange query tool. The details of regions from 1 January 1990 to 31 December 2019 from the China National Center for Food Safety Risk Assessment were also used. We conducted an integrated analysis on the gastric cancer burden attributable to high sodium intake among Chinese residents. The gastric cancer-related deaths, disability-adjusted life years (DALYs), age-standardized mortality rate (ASMR), and age-standardized DALYs rate (ASDR), all being calculated to be attributable to sodium intake, were reckoned as separated by age, sex, SDI, and regions. Then, the estimated annual percentage change (EAPC) was regarded as the secular trends of gastric cancer's ASMR and ASDR due to high sodium intake from 1990 to 2019. We further explored the associations between SDI (Socio-demographic index) and the ASMR and ASDR. The rates were calculated per 100,000 population as age-standardized rates. RESULTS: Briefly, the number of gastric cancer-related deaths and DALYs being attributed to high sodium intake were 37,131.48 (95% UI: 833.14 to 138,478.72) and 873,813.19 (95% UI: 19,283.13 to 3,220,231.82) in 2019; both have increased by a third since 1990. However, the ASMR decreased with an EAPC of -1.72% (95% CI: -2.11% to -1.33%), while ASDR increased with an EAPC of 0.36% (95% CI: 0.08% to 0.68%), respectively. The age-specific numbers and rates of deaths, as well as DALYs of gastric cancer being attributed to high sodium intake, elevated gradually with age. And, they were higher in males than in females. The gastric cancer burden being attributed to high sodium intake in 2019 and its temporal trends from 1990 to 2019 varied greatly by SDI quintile and geographic locations. There was a strong negative association between the EAPC in ASMR and SDI in 2019 (ρ = -0.642, p < 0.001). The EAPC in ASDR and SDI also exhibited a negative connection in 2019 (ρ = -0.538, p = 0.0012). CONCLUSIONS: Overall, using a longitudinal sample from different regions, the study presented that gastric cancer burden attributed to high sodium intake still exists seriously and varies remarkably by regions, sex, and age across China. The disparity of socioeconomic status on disease burden also exists. Integrated and precise approaches for gastric cancer prevention are anticipated in the future.


Subject(s)
Sodium, Dietary , Stomach Neoplasms , Female , Male , Humans , Stomach Neoplasms/epidemiology , Stomach Neoplasms/etiology , Longitudinal Studies , China/epidemiology , Glycation End Products, Advanced , Sodium, Dietary/adverse effects , Global Health
9.
Molecules ; 28(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894521

ABSTRACT

Licorice is a frequently applied herb with potential edible and medicinal value based on various flavonoids and triterpenes. However, studies on detailed flavonoid and triterpene metabolism and the molecular basis of their biosynthesis in licorice are very limited, especially under drought conditions. In the present study, we carried out transcriptome, proteome, and metabolome experiments. To ultimately combine three omics for analysis, we performed a bioinformatics comparison, integrating transcriptome data and proteome data through a Cloud platform, along with a simplified biosynthesis of primary flavonoids and triterpenoids in the KEGG pathway based on metabolomic results. The biosynthesis pathways of triterpenes and flavonoids are enriched at both gene and protein levels. Key flavonoid-related genes (PAL, 4CL, CHS, CHI, CYP93C, HIDH, HI4OMT, and CYP81E1_7) and representative proteins (HIDH, CYP81E1_7, CYP93C, and VR) were obtained, which all showed high levels after drought treatment. Notably, one R2R3-MYB transcription factor (Glyur000237s00014382.1), a critical regulator of flavonoid biosynthesis, achieved a significant upregulated expression as well. In the biosynthesis of glycyrrhizin, both gene and protein levels of bAS and CYP88D6 have been found with upregulated expression under drought conditions. Most of the differentially expressed genes (DEGs) and proteins (DEPs) showed similar expression patterns and positively related to metabolic profiles of flavonoid and saponin. We believe that suitable drought stress may contribute to the accumulation of bioactive constituents in licorice, and our research provides an insight into the genetic study and quality breeding in this plant.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza uralensis/genetics , Droughts , Multiomics , Proteome/metabolism , Plant Breeding , Flavonoids/metabolism , Glycyrrhizic Acid/metabolism , Gene Expression Regulation, Plant , Transcriptome
10.
Microsyst Nanoeng ; 9: 123, 2023.
Article in English | MEDLINE | ID: mdl-37811123

ABSTRACT

With the annual increases in the morbidity and mortality rates of tumors, the use of biomarkers for early diagnosis and real-time monitoring of tumor cells is of great importance. Biomarkers used for tumor cell detection in body fluids include circulating tumor cells, nucleic acids, protein markers, and extracellular vesicles. Among them, circulating tumor cells, circulating tumor DNA, and exosomes have high potential for the prediction, diagnosis, and prognosis of tumor diseases due to the large amount of valuable information on tumor characteristics and evolution; in addition, in situ monitoring of telomerase and miRNA in living cells has been the topic of extensive research to understand tumor development in real time. Various techniques, such as enzyme-linked immunosorbent assays, immunoblotting, and mass spectrometry, have been widely used for the detection of these markers. Among them, the detection of tumor cell markers in body fluids based on electrochemical biosensors and fluorescence signal analysis is highly preferred because of its high sensitivity, rapid detection and portable operation. Herein, we summarize recent research progress in the detection of tumor cell biomarkers in body fluids using electrochemical and fluorescence biosensors, outline the current research status of in situ fluorescence monitoring and the analysis of tumor markers in living cells, and discuss the technical challenges for their practical clinical application to provide a reference for the development of new tumor marker detection methods.

11.
Microsyst Nanoeng ; 9: 118, 2023.
Article in English | MEDLINE | ID: mdl-37767528

ABSTRACT

To minimize and control the transmission of infectious diseases, a sensitive, accurate, rapid, and robust assay strategy for application on-site screening is critical. Here, we report single-molecule RNA capture-assisted digital RT-LAMP (SCADL) for point-of-care testing of infectious diseases. Target RNA was captured and enriched by specific capture probes and oligonucleotide probes conjugated to magnetic beads, replacing laborious RNA extraction. Droplet generation, amplification, and the recording of results are all integrated on a microfluidic chip. In assaying commercial standard samples, quantitative results precisely corresponded to the actual concentration of samples. This method provides a limit of detection of 10 copies mL-1 for the N gene within 1 h, greatly reducing the need for skilled personnel and precision instruments. The ultrasensitivity, specificity, portability, rapidity and user-friendliness make SCADL a competitive candidate for the on-site screening of infectious diseases.

12.
J Hum Genet ; 68(12): 835-842, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37648893

ABSTRACT

This study aims to investigate the correlations between islet function/ insulin resistance and serum lipid levels, as well as to assess whether the strength of such correlations is affected by the GCKR rs1260326 variant in healthy and T2D individuals. We performed an oral glucose tolerance test (OGTT) on 4889 middle-aged adults, including 3135 healthy and 1754 T2D individuals from the REACTION population study in the Nanjing region. We also measured their serum lipid levels and genotyped for rs1260326. We found that serum high-density lipoprotein (HDL) cholesterol and triglyceride (TG) levels were independently correlated with indexes of islet function (HOMA-ß and IGI [insulinogenic index]) and insulin resistance (HOMO-IR and ISIMatsuda) in both healthy and T2D individuals. The correlations were significantly decreased in T2D individuals, with significant heterogeneities compared to healthy controls (I2 > 75%, Phet < 0.05). Although no correlation was observed between serum total cholesterol (TC) level and islet function/ insulin resistance in healthy controls, significant correlations were found in T2D individuals, with significant heterogeneity to healthy controls in the correlation with ISIMatsuda(I2 = 85.3%, Phet = 0.009). Furthermore, we found significant interactions of the GCKR rs1260326 variant for the correlations between serum HDL cholesterol and HOMA-ß/ISIMatsuda in T2D subjects (P = 0.015 and 0.038, respectively). These findings illustrate that distinct correlations between serum lipid levels and islet function/ insulin resistance occurred in T2D subjects compared to healthy individuals. Common gene variants, such as rs1260326, might interact substantially when studied in specific populations, especially T2D disease status.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adult , Middle Aged , Humans , Insulin Resistance/genetics , Cholesterol, HDL , Triglycerides , Blood Glucose , Adaptor Proteins, Signal Transducing/genetics
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(5): 516-520, 2023 May 15.
Article in Chinese | MEDLINE | ID: mdl-37272179

ABSTRACT

OBJECTIVES: To summarize the clinical features of neonates infected with Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: The medical data of 23 neonates with Omicron variant of SARS-CoV-2 infection admitted to the City North Campus of Urumqi First People's Hospital from October to December 2022 were retrospectively reviewed. RESULTS: All 23 infants had a history of exposure to confirmed caregivers with SARS-CoV-2 infection after birth, and none of them was vertically transmitted. Clinical classification: 5 cases of asymptomatic infection, 18 cases of mild infection, and no cases of moderate, severe, or critically ill. The first symptoms were fever in 13 cases, cough in 3 cases, nasal congestion in 1 case, and diarrhea in 1 case. Blood white blood cell counts decreased in 2 cases, and C-reactive protein increased in 1 case. Seven infants underwent chest X-ray examination due to cough or shortness of breath, and one of which showed focal exudative changes, while the rest showed no abnormal changes. All infants were discharged after symptomatic treatment and the median hospital stay was 6 days. The duration of nucleic acid positivity of SARS-CoV-2 was negatively correlated with N gene Ct values and ORF1ab gene Ct values (rs=-0.719 and -0.699, respectively; P<0.05). One month after discharge, all infants had no symptoms or signs of nucleic acid re-positivity. CONCLUSIONS: The clinical manifestations are usually mild or asymptomatic in neonates infected with SARS-CoV-2 Omicron variant. The lower the Ct values of the N and ORF1ab genes of SARS-CoV-2, the longer the duration of nucleic acid positivity. Neonates infected with SARS-CoV-2 Omicron variant can have a good prognosis after symptomatic treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Infant, Newborn , Cough , Retrospective Studies
14.
Micromachines (Basel) ; 14(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241700

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is a rapid and high-yield amplification technology for specific DNA or RNA molecules. In this study, we designed a digital loop-mediated isothermal amplification (digital-LAMP)-functioning microfluidic chip to achieve higher sensitivity for detection of nucleic acids. The chip could generate droplets and collect them, based on which we could perform Digital-LAMP. The reaction only took 40 min at a constant temperature of 63 °C. The chip enabled highly accurate quantitative detection, with the limit of detection (LOD) down to 102 copies µL-1. For better performance while reducing the investment of money and time in chip structure iterations, we used COMSOL Multiphysics to simulate different droplet generation ways by including flow-focusing structure and T-junction structure. Moreover, the linear structure, serpentine structure, and spiral structure in the microfluidic chip were compared to study the fluid velocity and pressure distribution. The simulations provided a basis for chip structure design while facilitating chip structure optimization. The digital-LAMP-functioning chip proposed in the work provides a universal platform for analysis of viruses.

15.
Front Neurorobot ; 17: 1159168, 2023.
Article in English | MEDLINE | ID: mdl-37180284

ABSTRACT

Tactile object recognition (TOR) is very important for the accurate perception of robots. Most of the TOR methods usually adopt uniform sampling strategy to randomly select tactile frames from a sequence of frames, which will lead to a dilemma problem, i.e., acquiring the tactile frames with high sampling rate will get lots of redundant data, while the low sampling rate will miss important information. In addition, the existing methods usually adopt single time scale to construct TOR model, which will induce that the generalization capability is not enough for processing the tactile data generated under different grasping speeds. To address the first problem, a novel gradient adaptive sampling (GAS) strategy is proposed, which can adaptively determine the sampling interval according to the importance of tactile data, therefore, the key information can be acquired as much as possible when the number of tactile frames is limited. To handle the second problem, a multiple temporal scale 3D convolutional neural networks (MTS-3DCNNs) model is proposed, which downsamples the input tactile frames with multiple temporal scales (MTSs) and extracts the MTS deep features, and the fused features have better generalization capability for recognizing the object grasped with different speed. Furthermore, the existing lightweight network ResNet3D-18 is modified to obtain a MR3D-18 network which can match the tactile data with smaller size and prevent the overfitting problem. The ablation studies show the effectiveness of GAS strategy, MTS-3DCNNs, and MR3D-18 networks. The comprehensive comparisons with advanced methods demonstrate that our method is SOTA on two benchmarks.

16.
Mikrochim Acta ; 190(4): 120, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36884101

ABSTRACT

T-2 toxin is the most potent and toxic mycotoxin, produced by various Fusarium species that can potentially affect human health, and widely exists in field crops and stored grain. In this work, an electrochemical aptasensor with nonenzymatic signal amplification strategy for the detection of T-2 toxin is presented, using noble metal nanocomposites and catalytic hairpin assembly as signal amplification strategy. Silver palladium nanoflowers and gold octahedron nanoparticles@graphene oxide nanocomposites are used for synergistic amplification of electrical signals. Simultaneously, the catalytic hairpin assembly strategy based on artificial molecular technology was introduced to further amplify the signal. Under optimal conditions, T-2 toxin was measured within a linear concentration range 1 × 10-2 ~ 1 × 104 pg·mL-1 with an extremely low detection limit of 6.71 fg·mL-1. The aptasensor exhibited high sensitivity, good selectivity, satisfactory stability, and excellent reproducibility. Moreover, this method had high accuracy in detecting T-2 toxin in beer sample. The encouraging results show the potential application in foodstuff analysis. A dual signal amplification electrochemical biosensor for the detection of T-2 toxins was constructed, through the signal amplification of noble metal nanomaterials and CHA strategy.


Subject(s)
Metal Nanoparticles , Nanocomposites , T-2 Toxin , Humans , Reproducibility of Results , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Limit of Detection , Nanocomposites/chemistry
17.
Opt Express ; 31(2): 853-863, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785133

ABSTRACT

To reveal the effect of the incident polarization on the spin splitting of the photonic spin Hall effect (that is, the spatial and angular in-plane and out-of-plane spin splitting), we systematically study the phenomena and characteristics of these four spin splitting generated when the beam with arbitrary linear polarization is reflected from the non-absorbing medium interface and the absorbing medium interface. Several features of the relationship between the incident polarization and the four kinds of spin splitting are found. In addition, It is also found that the in-plane angular and spatial shifts are significantly enhanced near the critical angle, even reaching their theoretical upper limit. However, the out-of-plane shifts are not enhanced. The research in this paper will contribute to a deeper understanding of PSHE. These findings can also provide new ideas and methods for precision metrology, photonic manipulation, and photonic device fabrication.

18.
Gene ; 862: 147252, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36740203

ABSTRACT

Ganoderic acid T (GA-T) is an important triterpene of Ganoderma lucidum, which is utilized to treat viral infections. Sendai virus (SeV) is widely studied to determine the molecular biological characteristics of RNA viruses and employed to elucidate the mechanisms governing the innate immune response. However, the comprehensive mechanism governing the antiviral effects of GA-T against SeV infection remains unknown. In this study, SeV-infected host cells were treated with 16.3 µM GA-T, subsequently RNA-seq analysis was performed to screen the differentially expressed genes (DEGs). The RNA-seq data showed that GA-T treatment upregulated 934 DEGs and downregulated 1283 DEGs against viral infection, in particularly, IFNGR1, IL1A, and IL1R1 were upregulated, and mTOR, SMAD3, IFNL2 and IFNL3 were decreased. GO and KEGG analysis illustrated that DEGs were clustered in mTOR and IL-17 signalling pathways. Protein-protein interaction network analysis indicated the high degree of nodes, such as CXCL8, CSF2, CXCL1 and MYD88. Our results indicated that GA-T exerted its antiviral pharmacological effects through inhibition of the mTOR signalling pathway and adjustment of innate immunity system and the inflammatory response involving the IL-17 signalling pathway. Our results may help to elucidate the potential functions and underlying mechanisms governing the antiviral effects of GA-T.


Subject(s)
Gene Expression Profiling , Interleukin-17 , TOR Serine-Threonine Kinases , Antiviral Agents , Computational Biology , Transcriptome
19.
Anal Chim Acta ; 1239: 340714, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36628769

ABSTRACT

Lead ion (Pb2+) is one of the most toxic and widely polluted heavy metal ions. Given the potential health risks and economic losses associated with Pb2+, the rapid detection of Pb2+ using fluorescent aptasensors is of significant importance in evaluating food safety. A rapid, facile and economic fluorescent aptasensor using convenient paper as the sensing substrate was designed to high-throughput detect Pb2+ in complex samples within about 45 min. The Pb2+ changed the conformation of FAM-modified Apt from a random coil to a stable G-quadruplex structure. And then Dabcyl-labeled cDNA was added to form double-stranded DNA with the Apt that did not form a G-quadruplex structure, resulting in a weak fluorescence due to the fluorescence resonance energy transfer (FRET). The fluorescent aptasensor showed a positive correlation with Pb2+ concentration, and a linear relationship was obtained in the range of 0.01-10 µM with LOD of 6.1 nM. In addition, this method has been successfully used for the determination of Pb2+ in water, soil and various foods containing complex substrates. Meanwhile, the high-throughput detection of Pb2+ has also reached an acceptable level. Therefore, this convenient strategy has potential application value for on-site rapid detection of Pb2+.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Water , Lead , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Coloring Agents , Limit of Detection
20.
Front Genet ; 13: 966296, 2022.
Article in English | MEDLINE | ID: mdl-36544488

ABSTRACT

Backgrounds: Given the roles of microRNA (miRNA) in human diseases and the high incidence of gestational diabetes mellitus (GDM), the aim of the study was to examine miRNA signatures and crucial pathways, as well as possible biomarkers for GDM diagnosis. Methods: We conducted a two-stage study to explore functional miRNA and those target genes. Twelve participants (6 GDM and 6 non-GDM) were first enrolled and performed RNA sequencing analysis. The overlapped candidate genes were further screened in combination with differentially expressed genes (DEGs) of GEO datasets (GSE87295, GSE49524 and GSE19649) and potential target genes of DEMs. Candidate genes, critical pathways, small molecular compounds and regulatory networks were identified using bioinformatic analysis. The potential candidate genes were then investigated using the GEO dataset (GSE103552) of 19 participants in the validation stage (11 GDM and 8 non-GDM women). Results: Briefly, blood samples were sequenced interrogating 50 miRNAs, including 20 upregulated and 30 downregulated differentially expressed microRNAs(DEMs) in our internal screening dataset. After screening GEO databases, 123 upregulated and 70 downregulated genes were overlapped through DEGs of GEO datasets and miRNA-target genes. MiR-29b-1-5p-TGFB2, miR-142-3p-TGFB2, miR-9-5p-FBN2, miR-212-5p-FBN2, miR-542-3p-FBN1, miR-9-5p-FBN1, miR-508-3p-FBN1, miR-493-5p-THBS1, miR-29b-3p-COL4A1, miR-432-5p-COL5A2, miR-9-5p-TGFBI, miR-486-3p-SLC7A5 and miR-6515-5p-SLC1A5 were revealed as thirteen possible regulating pathways by integrative analysis. Conclusion: Overall, thirteen candidate miRNA-target gene regulatory pathways representing potentially novel biomarkers of GDM diseases were revealed. Ten chemicals were identified as putative therapeutic agents for GDM. This study examined a series of DEGs that are associated with epigenetic alternations of miRNA through an integrated approach and gained insight into biological pathways in GDM. Precise diagnosis and therapeutic targets of GDM would be further explored through putative genes in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...