Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Integr Zool ; 18(2): 353-371, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36056589

ABSTRACT

The thermoneutral zone (TNZ) reflects the adaptation of mammals to their natural habitat. However, it remains unclear how TNZ shifts in response to variations in ambient temperature. To test the hypothesis that ambient temperature plays a key role in determining TNZ variations between seasons, we measured metabolic rate, body temperature, and cytochrome c oxidase (COX) activity of several visceral organs in striped hamsters (Cricetulus barabensis) either acclimated to semi-natural conditions over a year, or subjected to a gradual decrease in mean temperature from 30 ± 1°C to -15 ± 1°C. The TNZ range in striped hamsters differed seasonally, with a wider TNZ and a lower lower-critical temperature in winter compared to summer. The hamsters showed a considerable leftward shift of lower-critical temperature from 30°C to 20°C after the ambient temperature of acclimation from 30°C down to -15°C, whereas the upper-critical temperature of TNZ remained fixed at 32.5°C. The resting metabolic rate in thermoneutral zone (RMRt), nonshivering thermogenesis (NST), and COX activity of brown adipose tissue, liver, skeletal muscle, brain, and kidneys, increased significantly in hamsters acclimated at lower ambient temperatures. Following acute exposure to 5°C and -15°C, hamsters acclimated to 32.5°C had significantly lower maximal NST and lower serum thyroid tri-iodothyronine (T3 ) levels compared to those kept at 23°C. These findings suggest that acclimation to the upper-critical temperature of TNZ impairs the hamsters' thermogenic capacity to cope with extreme cold temperature. Reduced ambient temperature was mainly responsible for the leftward shift of TNZ in striped hamsters, which reflects the adaptation to cold environments.


Subject(s)
Cold Temperature , Thermogenesis , Cricetinae , Animals , Temperature , Thermogenesis/physiology , Cricetulus , Basal Metabolism , Adipose Tissue, Brown/metabolism , Acclimatization/physiology
2.
Risk Anal ; 43(9): 1795-1810, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36481992

ABSTRACT

The safety and security of straits and canals have been playing an important role in maritime transportation. The disruption of a strait or canal will lead to increased transportation costs and world trade problems. Therefore, an advanced approach incorporating fuzzy logic and an evidential reasoning (ER) algorithm is developed to conduct the vulnerability assessment of straits or canals in this paper. A hierarchical structure is first developed taking into account both qualitative and quantitative factors. The fuzzy rule-based transformation technique is applied to convert quantitative factors into qualitative ones, which enables the application of a fuzzy ER method to synthesize all the information from the bottom to the top along the developed hierarchical structure. The software of intelligent decision system (IDS) is used to facilitate the process of vulnerability assessment. The developed framework then is validated and demonstrated in a case study for vulnerability prioritization which can be used as a reference to ensure the safety and security of straits and canals for decision-makers.

SELECTION OF CITATIONS
SEARCH DETAIL