Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(31): 13760-13771, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39051920

ABSTRACT

China's unprecedented rapid urbanization has dramatically reshaped the urban built environment, disrupting the thermal balance of cities. This disruption causes the urban heat island (UHI) effect, adversely affecting urban sustainability and public health. Although studies have highlighted the remarkable impacts of the built environment on UHIs, the specific effects of its various structures and components remain unclear. In this study, a multidimensional remote sensing data set was used to quantify the atmospheric UHIs across 335 Chinese cities from 1980 to 2020. In conjunction with stocks of three end-use sectors and three material groups, the impacts of gridded material stocks on UHI variations were analyzed. The findings reveal that building stocks exert a predominant influence in 48% of cities. Additionally, the extensive use of metal and inorganic materials has increased thermal stress in 220 cities, leading to an average UHI increase of 0.54 °C. The effect of organic materials, primarily arising from mobile heat sources, is continuously increasing. Overall, this study elucidates the effect of the functional structure and material composition of urban landscapes on UHIs, highlighting the complexities associated with the influence of the built environment on the urban heat load.


Subject(s)
Built Environment , Cities , Hot Temperature , Urbanization , China
2.
Sci Data ; 10(1): 915, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123553

ABSTRACT

Material stocks have created alternative perspectives in many environmental and climate studies. Their significance nonetheless may be under-explored, partially due to scarcity of more precise, timely and higher-resolution information. To address this limitation, our present study developed a gridded material stocks dataset for China in Year 2000 and 2020, by examining the geographical distribution and geometric configurations of the human-made stock-containing environment. The stocks of twelve materials embodied in five end-use sectors and 104 products and constructions were assessed at a resolution of 1 × 1 km grid. Material intensity in each product or construction component was carefully evaluated and tagged with its geometric conformation. The gridded stocks aggregately are consistent with the stock estimation across 337 prefectures and municipalities. The reliability of our assessment was also validated by previous studies from national, regional, to grid levels. This gridded mapping of material stocks may offer insights for urban-rural disparities, urban mining opportunity, and climate and natural disaster resilience.

SELECTION OF CITATIONS
SEARCH DETAIL