Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.438
Filter
1.
Materials (Basel) ; 17(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998185

ABSTRACT

To fully realize the potential application of spalled thermal barrier coating systems (TBCs) in gas turbine blades, it is essential to evaluate the service behavior of TBCs and the critical spallation size for safety servicing. For this purpose, the evaluation of the localized spallation of TBCs under high-temperature gas was investigated experimentally and numerically. Thermal insulation experiments and a conjugate heat transfer numerical algorithm were used to clarify the over-temperature phenomenon, temperature distributions, the relevant flow characteristics of the high-temperature gas in the localized spallation region of TBCs, and the influencing mechanisms that consider the spallation width were identified. The results suggested that when the spallation width was less than 10 µm, the temperature in the TBCs did not change due to the weak impression of gas. When the spallation width exceeded the security coefficient of about 3 mm, the TBCs were difficult to service safely due to the impact of high-temperature gas. Furthermore, the concept of an over-temperature coefficient was proposed to describe the over-temperature damage and a nonlinear fitting equation was obtained to reveal and predict the evolution of the over-temperature coefficient. The over-temperature coefficient may serve as a valuable metric in determining the performance degradation of TBCs.

2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000202

ABSTRACT

The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.


Subject(s)
Cisplatin , Hair Cells, Auditory , Microbubbles , Muramidase , NADPH Oxidase 4 , Ototoxicity , Reactive Oxygen Species , Cisplatin/pharmacology , Animals , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Mice , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Reactive Oxygen Species/metabolism , Ototoxicity/genetics , Muramidase/genetics , RNA, Small Interfering/genetics , Ultrasonic Waves , Gene Knockdown Techniques , Cell Line
3.
bioRxiv ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39005270

ABSTRACT

Human-mouse chimeric brain models, generated by transplanting human induced pluripotent stem cell (hiPSC)-derived neural cells, are valuable for studying the development and function of human neural cells in vivo. Understanding glial-glial and glial-neuronal interactions is essential for unraveling the complexities of brain function and developing treatments for neurological disorders. To explore these interactions between human neural cells within an intact brain environment, we employe a co-transplantation strategy involving the engraftment of hiPSC-derived neural progenitor cells along with primitive macrophage progenitors into the neonatal mouse brain. This approach creates human-mouse chimeric brains containing human microglia, macroglia (astroglia and oligodendroglia), and neurons. Using super-resolution imaging and 3D reconstruction techniques, we examine the dynamics between human neurons and glia, unveiling human microglia engulfing immature human neurons, microglia pruning synapses of human neurons, and significant interactions between human oligodendrocytes and neurons. Single-cell RNA sequencing analysis of the chimeric brain uncovers a close recapitulation of the human glial progenitor cell population, along with a dynamic stage in astroglial development that mirrors the processes found in the human brain. Furthermore, cell-cell communication analysis highlights significant neuronal-glial and glial-glial interactions, especially the interaction between adhesion molecules neurexins and neuroligins. This innovative co-transplantation model opens up new avenues for exploring the complex pathophysiological mechanisms underlying human neurological diseases. It holds particular promise for studying disorders where glial-neuronal interactions and non-cell-autonomous effects play crucial roles.

4.
Nat Cancer ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961276

ABSTRACT

Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an indirect two-step approach consisting of (1) DeepPT, a deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response to targeted and immune therapies from the inferred expression values. We show that DeepPT successfully predicts transcriptomics in all 16 The Cancer Genome Atlas cohorts tested and generalizes well to two independent datasets. ENLIGHT-DeepPT successfully predicts true responders in five independent patient cohorts involving four different treatments spanning six cancer types, with an overall odds ratio of 2.28 and a 39.5% increased response rate among predicted responders versus the baseline rate. Notably, its prediction accuracy, obtained without any training on the treatment data, is comparable to that achieved by directly predicting the response from the images, which requires specific training on the treatment evaluation cohorts.

5.
Waste Manag ; 187: 22-30, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971024

ABSTRACT

The widespread use of plastic mulch film (PMF) has led to significant environmental pollution, with PMF residues dispersed and mixed with straw and soil, posing challenges for recycling. Here, we proposed the mobile pyrolysis facility for the cotton straw and mulch film mixture (CMM) to mitigate the collection, storage, and transportation costs, while the application of co-pyrolysis technology for CMM conversion could improve the added value of products. Additionally, centralized combustion power generation and centralized pyrolysis systems were also established to evaluate and compare their sustainability from economic and environmental perspectives. Results showed that mobile pyrolysis has better economic performance than the centralized scenarios, due to its high internal rate of return (31 %) and significant net present value (29.21 M USD). Meanwhile, the mobile pyrolysis facility achieved a GWP of -1.298 kgCO2-eq/kg, reducing emissions by 70.79 % and 38.82 % compared to the two centralized scenarios. In conclusion, mobile pyrolysis technology provides a promising solution for PMF residue recycling because of its economically competitive approach with a lower carbon footprint.

6.
Ann Med Surg (Lond) ; 86(7): 4042-4048, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38989236

ABSTRACT

Osteoarthritis (OA) is a chronic disorder caused by degenerative changes in articular cartilage, which are mainly manifests as degeneration of cartilage, subchondral bone remodeling, as well as synovial inflammation. Over the next few decades, OA and its burden will continue to increase worldwide, posing a major public health challenge for the foreseeable future. Treatment for OA includes non-pharmacological, pharmacological, and surgical treatments. Existing conservative treatments and joint surgery can only alleviate the symptoms and cannot be cured, so new therapies for OA are urgently needed. Since advances in the understanding of OA pathophysiology, researchers have identified some potential therapeutic targets against degeneration of cartilage, subchondral bone remodeling and synovial inflammation, enabling development of the disease-modifying OA drugs (DMOADs). Additionally, a number of new technologies are also being investigated for treating OA, such as RNA interference (RNAi), CRISPR/Cas9 and PROTAC. The goal of this review is to describe the current development status of DMOADs and to discuss the potential of emerging therapeutic approaches for treating OA, thus providing a reference for OA treatments.

7.
Environ Res ; 260: 119508, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945511

ABSTRACT

Cyanobacterial blooms (CBs) and concomitant water quality issues in oligotrophic/mesotrophic waters have been recently reported, challenging the conventional understanding that CBs are primarily caused by eutrophication. To elucidate the underlying mechanism of CBs in nutrition-deficient waters, the changes in Chlorophyll a (Chl-a), cyanobacterial-bacterial community composition, and certain microbial function in Qingcaosha Reservoir, the global largest tidal estuary storage reservoir, were analyzed systematically and comprehensively after its pilot run (2011-2019) in this study. Although the water quality was improved and stabilized, more frequent occurrences of bloom level of Chl-a (>20 µg L-1) in warm seasons were observed during recent years. The meteorological changes (CO2, sunshine duration, radiation, precipitation, evaporation, and relative humidity), water quality variations (pH, total organic carbon content, dissolved oxygen, and turbidity), accumulated sediments as an endogenous source, as well as unique estuarine conditions collectively facilitated picocyanobacterial-bacterial coexistence and community functional changes in this reservoir. A stable and tight co-occurrence pattern was established between dominant cyanobacteria (Synechococcus, Cyanobium, Planktothrix, Chroococcidiopsis, and Prochlorothrix) and certain heterotrophic bacteria (Proteobacteria, Actinobacteria, and Bacteroidetes), which contributed to the remineralization of organic matter for cyanobacteria utilization. The relative abundance of chemoorganoheterotrophs and bacteria related to nitrogen transformation (Paracoccus, Rhodoplanes, Nitrosomonas, and Zoogloea) increased, promoting the emergence of CBs in nutrient-limited conditions through enhanced nutrient recycling. In environments with limited nutrients, the interaction between photosynthetic autotrophic microorganisms and heterotrophic bacteria appears to be non-competitive. Instead, they adopt complementary roles within their ecological niche over long-term succession, mutually benefiting from this association. This long-term study confirmed that enhanced nutrient cycling, facilitated by cyanobacterial-bacterial symbiosis following long-term succession, could promote CBs in oligotrophic aquatic environments devoid of external nutrient inputs. This study advances understanding of the mechanisms that trigger and sustain CBs under nutritional constraints, contributing to developing more effective mitigation strategies, ensuring water safety, and maintaining ecological balance.

8.
Adv Sci (Weinh) ; : e2401590, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864342

ABSTRACT

Metastasis is the biggest obstacle to esophageal squamous cell carcinoma (ESCC) treatment. Single-cell RNA sequencing analyses are applied to investigate lung metastatic ESCC cells isolated from pulmonary metastasis mouse model at multiple timepoints to characterize early metastatic microenvironment. A small population of parental KYSE30 cell line (Cluster S) resembling metastasis-initiating cells (MICs) is identified because they survive and colonize at lung metastatic sites. Differential expression profile comparisons between Cluster S and other subpopulations identified a panel of 7 metastasis-initiating signature genes (MIS), including CD44 and TACSTD2, to represent MICs in ESCC. Functional studies demonstrated MICs (CD44high) exhibited significantly enhanced cell survival (resistances to oxidative stress and apoptosis), migration, invasion, stemness, and in vivo lung metastasis capabilities, while bioinformatics analyses revealed enhanced organ development, stress responses, and neuron development, potentially remodel early metastasis microenvironment. Meanwhile, early metastasizing cells demonstrate quasi-epithelial-mesenchymal phenotype to support both invasion and anchorage. Multiplex immunohistochemistry (mIHC) staining of 4 MISs (CD44, S100A14, RHOD, and TACSTD2) in ESCC clinical samples demonstrated differential MIS expression scores (dMISs) predict lymph node metastasis, overall survival, and risk of carcinothrombosis.

9.
Int J Nanomedicine ; 19: 4923-4939, 2024.
Article in English | MEDLINE | ID: mdl-38828201

ABSTRACT

Purpose: In recent years, exosomes have been proved to be used to treat many diseases. However, due to the lack of uniform quality control standards for exosomes, the safety of exosomes is still a problem to be solved, especially now more and more exosomes are used in clinical trials, and its non-clinical safety evaluation is particularly important. However, there is no safety evaluation standard for exosomes at present. Therefore, this study will refer to the evaluation criteria of therapeutic biological products, adopt non-human primates to evaluate the non-clinical safety of human umbilical cord mesenchymal stem cell exosomes from the general pharmacology and immunotoxicity, aiming at establishing a safety evaluation system of exosomes and providing reference for the clinical application of exosomes in the future. Methods: 3.85 × 1012 exosomes derived from human umbilical cord mesenchymal stem cells were injected into cynomolgus monkeys intravenously. The changes of general clinical conditions, hematology, immunoglobulin, Th1/Th2 cytokines, T lymphocytes and B lymphocytes, and immune organs were observed before and within 14 days after injection. Results: The results showed that exosomes did not have obvious pathological effects on the general clinical conditions, blood, coagulation function, organ coefficient, immunoglobulin, Th1/Th2 cytokines, lymphocytes, major organs, and major immune organs (spleen, thymus, bone marrow) of cynomolgus monkeys. However, the number of granulocyte-macrophage colonies in exosomes group was significantly higher than that in control group. Conclusion: To sum up, the general pharmacological results and immunotoxicity results showed that the injection of 3.85 × 1012 exosomes may have no obvious adverse reactions to cynomolgus monkeys. This dose of exosomes is relatively safe for treatment, which provides basis research for non-clinical safety evaluation of exosomes and provides reliable research basis for future clinical application of exosomes.


Subject(s)
Exosomes , Macaca fascicularis , Mesenchymal Stem Cells , Umbilical Cord , Animals , Exosomes/chemistry , Mesenchymal Stem Cells/cytology , Humans , Umbilical Cord/cytology , Male , Female , Cytokines/metabolism
10.
Front Chem ; 12: 1368595, 2024.
Article in English | MEDLINE | ID: mdl-38835725

ABSTRACT

Naphtha, as the primary raw material in the production of light olefins, could well accommodate their increasing demand through the energy-efficient process of catalytic cracking with ZSM-5. In the current work, different amounts of lanthanum and phosphorous were loaded on ZSM-5 using the wet impregnation method to tune the acidic properties of ZSM-5 for selective catalytic cracking of n-hexane to produce light olefins. Various characterization techniques such as X-ray diffraction (XRD), Al nuclear magnetic resonance (NMR), temperature-programmed desorption of NH3 (NH3-TPD), Py-Fourier transform infra-red (Py-FTIR), inductively coupled plasma optical emission spectroscopy (ICP-OES), N2 adsorption-desorption, X-ray photoelectron spectra (XPS), and scanning electron microscopy were adopted to investigate the modified zeolites. It was found that adding La to ZSM-5 (0.25 wt% to 1 wt%) improved the catalytic life and increased the n-hexane conversion (to 99.7%), while the further addition had a negative impact, reducing the conversion rate and deviating the product selectivity towards a substantial, undesired benzene, toluene, and xylene (BTX) fraction (33%). On the other hand, a 64% selectivity for light olefins was achieved on phosphorous-doped ZSM-5 (at a loading amount of 1 wt%) while reducing the BTX fraction (2.3%) and converting 69% of the n-hexane. A dual metal-modified ZSM-5 with optimal loading amount, 1P0.25LaZ5 (phosphorus 1 wt% and La 0.25 wt%), helped boost the light olefin selectivity to 62% in the tuned Lewis acid sites at an n-hexane conversion of about 77% while decreasing the undesired BTX selectivity to 3% by reducing the number of Brønsted sites. Thus, the current study reveals that tuning the acidic sites of ZMS-5 by dual metal augmentation with P.La is an effective way of controlling the amount of undesirable BTX produced at a stable n-hexane conversion rate and substantial olefin selectivity.

11.
J Integr Med ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38853116

ABSTRACT

OBJECTIVE: Hepatolenticular degeneration (HLD) is an autosomal recessive disorder that manifests as multiorgan damage due to impaired copper (Cu) metabolism. Female patients with HLD often experience reproductive impairments. This study investigated the protective effect of berberine against ovarian damage in toxic-milk (TX) mice, a murine model for HLD. METHODS: Mice were categorized into control group, HLD TX group (HLD group), penicillamine (Cu chelator)-treated TX group and berberine-treated TX group. Body weight, ovary weight and the number of ovulated eggs were recorded. Follicular morphology and cellular ultrastructure were examined. Total iron, ferrous iron (Fe2+) and trivalent iron (Fe3+) levels, as well as malondialdehyde (MDA), glutathione (GSH) and oxidized glutathione (GSSG), were measured in the ovaries. Western blot analysis was used to analyze the expression of proteins related to ferroptosis and endoplasmic reticulum (ER) stress. RESULTS: Ovarian tissue damage was evident in the HLD group, with a significant increase in ferroptosis and ER stress compared to the control group. This damage was inhibited by treatment with penicillamine, a Cu chelator. Compared with the HLD group, berberine increased the number of ovulations, and improved ovarian morphology and ultrastructure. Further, we found that berberine reduced total iron, Fe2+, MDA and GSSG levels, elevated GSH levels, decreased the expression of the ferroptosis marker protein prostaglandin-endoperoxide synthase 2 (PTGS2), and increased glutathione peroxidase 4 (GPX4) expression. Furthermore, berberine inhibited the expression of ER stress-associated proteins mediated by the protein kinase RNA-like ER kinase (PERK) pathway. CONCLUSION: Ferroptosis and ER stress are involved in Cu-induced ovarian damage in TX mice. Berberine ameliorates ovarian damage in HLD TX mice by inhibiting ferroptosis and ER stress. Please cite this article as: Liu QZ, Han H, Fang XR, Wang LY, Zhao D, Yin MZ, Zhang N, Jiang PY, Ji ZH, Wu LM. Berberine alleviates ovarian tissue damage in mice with hepatolenticular degeneration by suppressing ferroptosis and endoplasmic reticulum stress. J Integr Med. 2024; Epub ahead of print.

12.
ACS Omega ; 9(22): 23603-23612, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854555

ABSTRACT

Grouting serves as an effective method for mitigating geotechnical disasters in subsea tunnels. However, current theories and designs, primarily based on terrestrial tunnel contexts, seldom address the long-term effects of seawater ion erosion on reinforcement. An improved sand permeation grouting simulation test system was employed to examine the mechanical property evolution of sand layer grouting reinforcement under seawater erosion utilizing various grout types. The mechanical properties of grouting reinforcement, under varying curing conditions, were analyzed using a uniaxial compression test, permeability test, and scanning electron microscope (SEM) test. Test results indicate that seawater curing conditions initially enhance the strength and impermeability of grouting reinforcement; however, prolonged curing diminishes these mechanical benefits. The onset of this process occurs significantly sooner in cement-sodium silicate grout (28-56 days) compared to cement grout (56d to 90d). For the cement grouting reinforcement, the deformation modulus increases over time, albeit at a decreasing rate. The deformation modulus of cement-sodium silicate grouting reinforcement follows an increase-decrease-increase pattern, correlating with the volume ratio over time. The decline in mechanical properties of grouting reinforcement during the test's mid to late stages under seawater conditions results from the interplay between erosive ions, which inhibit mechanical growth and accelerate deterioration.

13.
Int J Parasitol Drugs Drug Resist ; 25: 100551, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38875756

ABSTRACT

Cryptosporidium parvum is a waterborne and foodborne zoonotic protozoan parasite, a causative agent of moderate to severe diarrheal diseases in humans and animals. However, fully effective treatments are unavailable for medical and veterinary uses. There is a need to explore new drug targets for potential development of new therapeutics. Because C. parvum relies on anaerobic metabolism to produce ATP, fermentative enzymes in this parasite are attractive targets for exploration. In this study, we investigated the ethanol-fermentation in the parasite and characterized the basic biochemical features of a bacterial-type bifunctional aldehyde/alcohol dehydrogenase, namely CpAdhE. We also screened 3892 chemical entries from three libraries and identified 14 compounds showing >50% inhibition on the enzyme activity of CpAdhE. Intriguingly, antifungal imidazoles and unsaturated fatty acids are the two major chemical groups among the top hits. We further characterized the inhibitory kinetics of selected imidazoles and unsaturated fatty acids on CpAdhE. These compounds displayed lower micromolar activities on CpAdhE (i.e., IC50 values ranging from 0.88 to 11.02 µM for imidazoles and 8.93 to 35.33 µM for unsaturated fatty acids). Finally, we evaluated the in vitro anti-cryptosporidial efficacies and cytotoxicity of three imidazoles (i.e., tioconazole, miconazole and isoconazole). The three antifungal imidazoles exhibited lower micromolar efficacies against the growth of C. parvum in vitro (EC50 values ranging from 4.85 to 10.41 µM and selectivity indices ranging from 5.19 to 10.95). The results provide a proof-of-concept data to support that imidazoles are worth being further investigated for potential development of anti-cryptosporidial therapeutics.

14.
Article in English | MEDLINE | ID: mdl-38885110

ABSTRACT

Deep learning-based solutions have achieved impressive performance in semantic segmentation but often require large amounts of training data with fine-grained annotations. To alleviate such requisition, a variety of weakly supervised annotation strategies have been proposed, among which scribble supervision is emerging as a popular one due to its user-friendly annotation way. However, the sparsity and diversity of scribble annotations make it nontrivial to train a network to produce deterministic and consistent predictions directly. To address these issues, in this paper we propose holistic solutions involving the design of network structure, loss and training procedure, named CC4S to improve Certainty and Consistency for Scribble-Supervised Semantic Segmentation. Specifically, to reduce uncertainty, CC4S embeds a random walk module into the network structure to make neural representations uniformly distributed within similar semantic regions, which works together with a soft entropy loss function to force the network to produce deterministic predictions. To encourage consistency, CC4S adopts self-supervision training and imposes the consistency loss on the eigenspace of the probability transition matrix in the random walk module (we named neural eigenspace). Such self-supervision inherits the category-level discriminability from the neural eigenspace and meanwhile helps the network focus on producing consistent predictions for the salient parts and neglect semantically heterogeneous backgrounds. Finally, to further improve the performance, CC4S uses the network predictions as pseudo-labels and retrains the network with an extra color constraint regularizer on pseudo-labels to boost semantic consistency in color space. Rich experiments demonstrate the excellent performance of CC4S. In particular, under scribble supervision, CC4S achieves comparable performance to those from fully supervised methods. Comprehensive ablation experiments verify the effectiveness of the design choices in CC4S and its robustness under extreme supervision cases, i.e., when scribbles are shrunk proportionally or dropped randomly. The code for this work has been open-sourced at https://github.com/panzhiyi/CC4S.

16.
Phytochemistry ; 225: 114172, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38834130

ABSTRACT

In total, 16 undescribed steroidal alkaloids (1-16), along with nine known ones (17-25), were isolated from the bulbs of Fritillaria ussuriensis Maxim. Among the undescribed compounds mentioned, compounds 1-6, 8 bearing an 16ß-hydroxy substituent, as well as compounds 13 and 14 exhibited an unusual seven-membered skeleton. Their structures were established based on extensive spectroscopic analyses, including HRESIMS and NMR (1D and 2D), and comparison with the data reported in the literature. Furthermore, all the compounds were evaluated for their anti-inflammatory effect on the NO production of LPS-stimulated RAW264.7 cells. Compounds 1, 4, 11, 15, 22 and 24 could significantly inhibit NO production with IC50 values below 10 µM.


Subject(s)
Alkaloids , Anti-Inflammatory Agents , Fritillaria , Lipopolysaccharides , Nitric Oxide , Plant Roots , Fritillaria/chemistry , Mice , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , RAW 264.7 Cells , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Plant Roots/chemistry , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Steroids/chemistry , Steroids/pharmacology , Steroids/isolation & purification , Structure-Activity Relationship , Dose-Response Relationship, Drug
17.
J Biomed Inform ; 156: 104673, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38862083

ABSTRACT

OBJECTIVE: Pneumothorax is an acute thoracic disease caused by abnormal air collection between the lungs and chest wall. Recently, artificial intelligence (AI), especially deep learning (DL), has been increasingly employed for automating the diagnostic process of pneumothorax. To address the opaqueness often associated with DL models, explainable artificial intelligence (XAI) methods have been introduced to outline regions related to pneumothorax. However, these explanations sometimes diverge from actual lesion areas, highlighting the need for further improvement. METHOD: We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into model explanations generated by XAI methods, thereby enhancing the quality of the explanations. Utilizing one lesion delineation created by radiologists, our approach first generates a template that represents potential areas of pneumothorax occurrence. This template is then superimposed on model explanations to filter out extraneous explanations that fall outside the template's boundaries. To validate its efficacy, we carried out a comparative analysis of three XAI methods (Saliency Map, Grad-CAM, and Integrated Gradients) with and without our template guidance when explaining two DL models (VGG-19 and ResNet-50) in two real-world datasets (SIIM-ACR and ChestX-Det). RESULTS: The proposed approach consistently improved baseline XAI methods across twelve benchmark scenarios built on three XAI methods, two DL models, and two datasets. The average incremental percentages, calculated by the performance improvements over the baseline performance, were 97.8% in Intersection over Union (IoU) and 94.1% in Dice Similarity Coefficient (DSC) when comparing model explanations and ground-truth lesion areas. We further visualized baseline and template-guided model explanations on radiographs to showcase the performance of our approach. CONCLUSIONS: In the context of pneumothorax diagnoses, we proposed a template-guided approach for improving model explanations. Our approach not only aligns model explanations more closely with clinical insights but also exhibits extensibility to other thoracic diseases. We anticipate that our template guidance will forge a novel approach to elucidating AI models by integrating clinical domain expertise.

18.
Neurosurg Rev ; 47(1): 256, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834876

ABSTRACT

OBJECTIVE: White blood cells (WBC) play an important role in the inflammatory response of the body. Elevated WBC counts on admission in patients with subarachnoid hemorrhage (SAH) correlate with a poor prognosis. However, the role of longitudinal WBC trajectories based on repeated WBC measurements during hospitalization remains unclear. We explored the association between different WBC trajectory patterns and in-hospital mortality. METHODS: We analyzed a cohort of consecutive patients with SAH between 2012 and 2020. Group-based trajectory modeling (GBTM) was used to group the patients according to their white blood cell patterns over the first 4 days. Stabilized inverse probability treatment weighting (sIPTW) was used to balance baseline demographic and clinical characteristics. We analyzed the association between the WBC trajectory groups and in-hospital mortality using a Cox proportional hazards model. RESULTS: In total, 506 patients with SAH were included in this retrospective cohort. The final model identified two distinct longitudinal WBC trajectories. After adjusting for confounding factors, multivariate regression analysis suggested that an elevated longitudinal WBC trajectory increased the risk of in-hospital mortality (hazard ratio [HR], 2.476; 95% confidence interval [CI] 1.081-5.227; P = 0.024) before sIPTW, and (HR, 2.472; 95%CI 1.489-4.977; P = 0.018) after sIPTW. CONCLUSION: In patients with SAH, different clinically relevant groups could be identified using WBC trajectory analysis. The WBC count trajectory-initially elevated and then decreased- may lead to an increased risk of in-hospital mortality following SAH.


Subject(s)
Hospital Mortality , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/mortality , Subarachnoid Hemorrhage/blood , Male , Female , Middle Aged , Aged , Leukocyte Count , Retrospective Studies , Inflammation , Adult , Prognosis , Cohort Studies
19.
iScience ; 27(6): 109926, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832027

ABSTRACT

Cytotoxic T lymphocyte (CTL) and terminal exhausted T lymphocyte (ETL) activities crucially influence immune checkpoint inhibitor (ICI) response. Despite this, the efficacy of ETL and CTL transcriptomic signatures for response prediction remains limited. Investigating this across the TCGA and publicly available single-cell cohorts, we find a strong positive correlation between ETL and CTL expression signatures in most cancers. We hence posited that their limited predictability arises due to their mutually canceling effects on ICI response. Thus, we developed DETACH, a computational method to identify a gene set whose expression pinpoints to a subset of melanoma patients where the CTL and ETL correlation is low. DETACH enhances CTL's prediction accuracy, outperforming existing signatures. DETACH signature genes activity also demonstrates a positive correlation with lymphocyte infiltration and the prevalence of reactive T cells in the tumor microenvironment (TME), advancing our understanding of the CTL cell state within the TME.

20.
Food Sci Nutr ; 12(6): 4435-4442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873477

ABSTRACT

4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) is a flavor compound widely found in natural products and is used in food as a flavor-enhancing agent. Quinone oxidoreductase (QOR) was verified as a key enzyme to synthesize HDMF in strawberry, while its impact on HDMF production by Zygosaccharomyces rouxii was still unknown. The QOR gene was cloned and overexpressed in Z. rouxii, and its impact on HDMF production by Z. rouxii was then further analyzed. At the same time, it is expected to obtain engineered strains of Z. rouxii with high HDMF production. The results showed that the engineered strains of Z. rouxii exhibit different levels of QOR gene expression and HDMF production; among them, the QOR6 strain exhibiting the highest gene expression level and HDMF production was named as ZrQOR. The HDMF production of the ZrQOR strain was significantly higher than that of wild-type Z. rouxii at 3 and 5 days of culture, with 1.41-fold and 1.08-fold increases, respectively. At 3 days of fermentation, the highest HDMF yield of ZrQOR strain was obtained (2.75 mg/L), 2 days ahead of the reported highest HDMF production by Z. rouxii. At 3, 5, and 7 days, QOR gene expression was 4.8-fold, 3.3-fold, and 5.6-fold higher in the ZrQOR strain than in the wild-type Z. rouxii, respectively. Therefore, overexpression of the QOR gene facilitates HDMF synthesis. The genetic stability of the 0-20 generation ZrQOR strain was stable, and there was no significant difference in colony shape, QOR expression, or HDMF production compared to the wild type. In this study, the genetic engineering Z. rouxii strain was used to improve HDMF production. This research has laid the groundwork for further industrial production of HDMF via microbial synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...