Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 23(1): 550, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37322413

ABSTRACT

BACKGROUND: As an adult tumor with the most invasion and the highest mortality rate, the inherent heterogeneity of glioblastoma (GBM) is the main factor that causes treatment failure. Therefore, it is important to have a deeper understanding of the pathology of GBM. Some studies have shown that Eukaryotic Initiation Factor 4A-3 (EIF4A3) can promote the growth of many people's tumors, and the role of specific molecules in GBM remains unclear. METHODS: The correlation between the expression of EIF4A3 gene and its prognosis was studied in 94 GBM patients using survival analysis. Further in vitro and in vivo experiments, the effect of EIF4A3 on GBM cells proliferation, migration, and the mechanism of EIF4A3 on GBM was explored. In addition, combined with bioinformatics analysis, we further confirmed that EIF4A3 contributes to the progress of GBM. RESULTS: The expression of EIF4A3 was upregulated in GBM tissues, and high expression of EIF4A3 is associated with poor prognosis in GBM. In vitro, knockdown of EIF4A3 significantly reduced the proliferation, migration, and invasion abilities of GBM cells, whereas overexpression of EIF4A3 led to the opposite effect. The analysis of differentially expressed genes related to EIF4A3 indicates that it is involved in many cancer-related pathways, such as Notch and JAK-STAT3 signal pathway. In Besides, we demonstrated the interaction between EIF4A3 and Notch1 by RNA immunoprecipitation. Finally, the biological function of EIF4A3-promoted GBM was confirmed in living organisms. CONCLUSION: The results of this study suggest that EIF4A3 may be a potential prognostic factor, and Notch1 participates in the proliferation and metastasis of GBM cells mediated by EIF4A3.


Subject(s)
Glioblastoma , Adult , Humans , Glioblastoma/pathology , Signal Transduction/genetics , Neoplastic Processes , Prognosis , Peptide Initiation Factors/metabolism , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , DEAD-box RNA Helicases/genetics
2.
Mol Cell Probes ; 69: 101913, 2023 06.
Article in English | MEDLINE | ID: mdl-37068562

ABSTRACT

LINC00511 is an long non-coding RNA (lncRNA) of ncRNAs,This study aimed to investigate whether the lncRNA LINC00511 could encode a small peptide, LINC00511-133aa, and whether this peptide could promote breast cancer cell metastasis and stemness by activating the wnt/ß-catenin pathway. The LINC00511-133aa coding sequence vector and control vector were transfected into MCF-7 and MDA-MB-231 breast cancer cells, with subsequent assessment of peptide expression using PCR, western blotting, and immunofluorescence assays. Cell proliferation, invasion, and apoptosis were evaluated using CCK8, apoptotic, wound healing, and transwell invasion assays, while the characteristic changes of tumor stem cells were detected through sphere-forming assay and western blot analyses of the stemness markers Oct4, Nanog, and SOX2. Results showed that LINC00511-133aa was indeed encoded by LINC00511 and promoted the invasiveness and stemness of breast cancer cells while limiting apoptosis by modulating the expression levels of wnt/ß-catenin pathway-related proteins Bax, c-myc, and CyclinD1, as well as facilitating ß-catenin protein entry into the nucleus. This study provides evidence for the potential involvement of lncRNA LINC00511 and its peptide product in breast cancer progression via the regulation of the wnt/ß-catenin pathway.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , beta Catenin/genetics , beta Catenin/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , RNA, Long Noncoding/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Peptides/genetics , Peptides/metabolism , Neoplasm Invasiveness/genetics
3.
Front Mol Neurosci ; 15: 913328, 2022.
Article in English | MEDLINE | ID: mdl-35875673

ABSTRACT

Background: Glioblastoma (GBM) is the most common malignant primary brain tumor, which associated with extremely poor prognosis. Methods: Data from datasets GSE16011, GSE7696, GSE50161, GSE90598 and The Cancer Genome Atlas (TCGA) were analyzed to identify differentially expressed genes (DEGs) between patients and controls. DEGs common to all five datasets were analyzed for functional enrichment and for association with overall survival using Cox regression. Candidate genes were further screened using least absolute shrinkage and selection operator (LASSO) and random forest algorithms, and the effects of candidate genes on prognosis were explored using a Gaussian mixed model, a risk model, and concordance cluster analysis. We also characterized the GBM landscape of immune cell infiltration, methylation, and somatic mutations. Results: We identified 3,139 common DEGs, which were associated mainly with PI3K-Akt signaling, focal adhesion, and Hippo signaling. Cox regression identified 106 common DEGs that were significantly associated with overall survival. LASSO and random forest algorithms identified six candidate genes (AEBP1, ANXA2R, MAP1LC3A, TMEM60, PRRG3 and RPS4X) that predicted overall survival and GBM recurrence. AEBP1 showed the best prognostic performance. We found that GBM tissues were heavily infiltrated by T helper cells and macrophages, which correlated with higher AEBP1 expression. Stratifying patients based on the six candidate genes led to two groups with significantly different overall survival. Somatic mutations in AEBP1 and modified methylation of MAP1LC3A were associated with GBM. Conclusion: We have identified candidate genes, particularly AEBP1, strongly associated with GBM prognosis, which may help in efforts to understand and treat the disease.

4.
Mol Ther Nucleic Acids ; 23: 244-254, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33425483

ABSTRACT

Circular RNA (circRNA) is a novel subclass of noncoding-RNA molecules that participate in development and progression of a variety of human diseases via sponging microRNAs (miRNAs). Until now, the contributions of circRNAs in chemoresistance of hepatocellular carcinoma (HCC) remain largely unknown. In the present study, we aimed to investigate the role of circRNA in cisplatin resistance of HCC. We investigated the expression of circRNAs in 5 paired cisplatin-sensitive and cisplatin-resistant HCC tissues by microarray analysis. The qRT-PCR analysis was to investigate the expression pattern of circARNT2 in HCC patient tissues and cell lines. Then, the effects of circARNT2 on cisplatin resistance, cell proliferation, and apoptosis were assessed in HCC in vitro and in vivo. circARNT2 was significantly upregulated in HCC tissues and cell lines. Overexpression of circARNT2 in HCC was significantly correlated with aggressive characteristics and served as an independent risk factor for overall survival in patients with HCC. In vitro experiments showed that knockdown of circARNT2 inhibited cell proliferation and enhances the cisplatin sensitivity of HCC cells. Furthermore, circARNT2 facilitates HCC progression in vivo. We demonstrated that circARNT2 acts as a sponge for miR-155-5p and verified that PDK1 is a novel target of miR-155-5p. In summary, our study demonstrated that circARNT2 modulates cisplatin resistance through miR-155-5p/PDK1 pathway. Our findings indicated that circARNT2 may serve as a promising therapeutic target for overcoming cisplatin resistance for HCC.

5.
J Exp Clin Cancer Res ; 37(1): 289, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30482236

ABSTRACT

BACKGROUND: Emerging evidence have illustrated the vital role of long noncoding RNAs (lncRNAs) long intergenic non-protein coding RNA 00511 (LINC00511) on the human cancer progression and tumorigenesis. However, the role of LINC00511 in breast cancer tumourigenesis is still unknown. This research puts emphasis on the function of LINC00511 on the breast cancer tumourigenesis and stemness, and investigates the in-depth mechanism. METHODS: The lncRNA and RNA expression were measured using RT-PCR. Protein levels were measured using western blotting analysis. CCK-8, colony formation assays and transwell assay were performed to evaluate the cell proliferation ability and invasion. Sphere-formation assay was also performed for the stemness. Bioinformatic analysis, chromatin immunoprecipitation (ChIP) and luciferase reporter assays were carried to confirm the molecular binding. RESULTS: LINC00511 was measured to be highly expressed in the breast cancer specimens and the high-expression was correlated with the poor prognosis. Functionally, the gain and loss-of-functional experiments revealed that LINC00511 promoted the proliferation, sphere-formation ability, stem factors (Oct4, Nanog, SOX2) expression and tumor growth in breast cancer cells. Mechanically, LINC00511 functioned as competing endogenous RNA (ceRNA) for miR-185-3p to positively recover E2F1 protein. Furthermore, transcription factor E2F1 bind with the promoter region of Nanog gene to promote it transcription. CONCLUSION: In conclusion, our data concludes that LINC00511/miR-185-3p/E2F1/Nanog axis facilitates the breast cancer stemness and tumorigenesis, providing a vital insight for them.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , E2F1 Transcription Factor/metabolism , MicroRNAs/genetics , Nanog Homeobox Protein/metabolism , Neoplastic Stem Cells/metabolism , RNA, Long Noncoding/genetics , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , E2F1 Transcription Factor/genetics , Female , Heterografts , Humans , MCF-7 Cells , Mice , MicroRNAs/metabolism , Middle Aged , Nanog Homeobox Protein/genetics , Neoplastic Stem Cells/pathology , RNA, Long Noncoding/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL