Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38744667

ABSTRACT

BACKGROUND AND AIM: False positives (FPs) pose a significant challenge in the application of artificial intelligence (AI) for polyp detection during colonoscopy. The study aimed to quantitatively evaluate the impact of computer-aided polyp detection (CADe) systems' FPs on endoscopists. METHODS: The model's FPs were categorized into four gradients: 0-5, 5-10, 10-15, and 15-20 FPs per minute (FPPM). Fifty-six colonoscopy videos were collected for a crossover study involving 10 endoscopists. Polyp missed rate (PMR) was set as primary outcome. Subsequently, to further verify the impact of FPPM on the assistance capability of AI in clinical environments, a secondary analysis was conducted on a prospective randomized controlled trial (RCT) from Renmin Hospital of Wuhan University in China from July 1 to October 15, 2020, with the adenoma detection rate (ADR) as primary outcome. RESULTS: Compared with routine group, CADe reduced PMR when FPPM was less than 5. However, with the continuous increase of FPPM, the beneficial effect of CADe gradually weakens. For secondary analysis of RCT, a total of 956 patients were enrolled. In AI-assisted group, ADR is higher when FPPM ≤ 5 compared with FPPM > 5 (CADe group: 27.78% vs 11.90%; P = 0.014; odds ratio [OR], 0.351; 95% confidence interval [CI], 0.152-0.812; COMBO group: 38.40% vs 23.46%, P = 0.029; OR, 0.427; 95% CI, 0.199-0.916). After AI intervention, ADR increased when FPPM ≤ 5 (27.78% vs 14.76%; P = 0.001; OR, 0.399; 95% CI, 0.231-0.690), but no statistically significant difference was found when FPPM > 5 (11.90% vs 14.76%, P = 0.788; OR, 1.111; 95% CI, 0.514-2.403). CONCLUSION: The level of FPs of CADe does affect its effectiveness as an aid to endoscopists, with its best effect when FPPM is less than 5.

2.
J Gastroenterol Hepatol ; 39(7): 1343-1351, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38414305

ABSTRACT

BACKGROUND AND AIM: Early whitish gastric neoplasms can be easily misdiagnosed; differential diagnosis of gastric whitish lesions remains a challenge. We aim to build a deep learning (DL) model to diagnose whitish gastric neoplasms and explore the effect of adding domain knowledge in model construction. METHODS: We collected 4558 images from two institutions to train and test models. We first developed two sole DL models (1 and 2) using supervised and semi-supervised algorithms. Then we selected diagnosis-related features through literature research and developed feature-extraction models to determine features including boundary, surface, roundness, depression, and location. Then predictions of the five feature-extraction models and sole DL model were combined and inputted into seven machine-learning (ML) based fitting-diagnosis models. The optimal model was selected as ENDOANGEL-WD (whitish-diagnosis) and compared with endoscopists. RESULTS: Sole DL 2 had higher sensitivity (83.12% vs 68.67%, Bonferroni adjusted P = 0.024) than sole DL 1. Adding domain knowledge, the decision tree performed best among the seven ML models, achieving higher specificity than DL 1 (84.38% vs 72.27%, Bonferroni adjusted P < 0.05) and higher accuracy than DL 2 (80.47%, Bonferroni adjusted P < 0.001) and was selected as ENDOANGEL-WD. ENDOANGEL-WD showed better accuracy compared with 10 endoscopists (75.70%, P < 0.001). CONCLUSIONS: We developed a novel system ENDOANGEL-WD combining domain knowledge and traditional DL to detect gastric whitish neoplasms. Adding domain knowledge improved the performance of traditional DL, which provided a novel solution for establishing diagnostic models for other rare diseases potentially.


Subject(s)
Deep Learning , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Retrospective Studies , Diagnosis, Differential , Sensitivity and Specificity , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL