Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Biomol Biomed ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38747892

ABSTRACT

Dysregulation of glycolysis is frequently linked to aggressive tumor activity in colorectal cancer (CRC). Although serine peptidase inhibitor, Kazal type 4 (SPINK4) has been linked to CRC, its exact linkage to glycolytic processes and gene expression remains unclear. Differentially expressed genes (DEGs) were screened from two CRC-related datasets (GSE32323 and GSE141174), followed by expression and prognostic analysis of SPINK4. In vitro techniques such as flow cytometry, western blotting, transwell assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to assess SPINK4 expression in CRC cells. Its effects on apoptosis, glycolysis, and the cell cycle were also investigated. Finally, the impact of SPINK4 overexpression on tumor development was assessed using a xenograft model, while histological and immunohistochemical analyses characterized SPINK4 expression patterns in CRC tissues. SPINK4 expression was downregulated in CRC, correlating with poor patient prognosis. In vitro assays confirmed that overexpression of SPINK4 reduced CRC cell proliferation, invasion, and migration, while its knockdown promoted these processes and caused G1 arrest. SPINK4 also regulated apoptosis by altering caspase activation and Bcl-2 expression. Besides, SPINK4 overexpression altered glycolytic activity, reduced 2-Deoxy-D-glucose (2-DG) absorption, and controlled critical glycolytic enzymes, resulting in alterations in metabolic pathways, whereas SPINK4 knockdown reversed this effect. SPINK4 overexpression significantly reduced tumor volume in vivo, indicating its inhibitory role in carcinogenesis. Moreover, high expression of SPINK4, hexokinase 2 (HK2), glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and pyruvate kinase M2 (PKM2) was observed in CRC tissues. As a key inhibitor of glycolytic metabolism in CRC, SPINK4 promises metabolic intervention in CRC therapy due to its impact on tumor growth and cell proliferation.

2.
Opt Lett ; 49(7): 1709-1712, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560843

ABSTRACT

In previously reported researches on bound state in the continuum (BIC) waveguides, almost all of them are demonstrated with top-down fabrication procedures, leading to inconvenience for post-manipulation and size tuning. Nanofibers with circular cross sections are the fundamental components to transport energy due to their intrinsic advantages of high flexibility and adjustability, which is replaceable and can be readily manipulated over size and position on the substrate. In this work, we explore the possibility of achieving on-chip integration of silica nanofiber onto a silicon-on-insulator platform. By constructing additional leakage channels in coupled nanofiber waveguides, coherently destructive interferences are successfully achieved. The heavy leakage losses from the low-index nanofiber to a high-index silicon substrate are completely eliminated with BIC, and the propagation length of the nanofiber waveguide is significantly improved.

3.
Small ; : e2400365, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644295

ABSTRACT

LiPF6-based carbonate electrolytes have been extensively employed in commercial Li-ion batteries, but they face numerous interfacial stability challenges while applicating in high-energy-density lithium-metal batteries (LMBs). Herein, this work proposes N-succinimidyl trifluoroacetate (NST) as a multifunctional electrolyte additive to address these challenges. NST additive could optimize Li+ solvation structure and eliminate HF/H2O in the electrolyte, and preferentially be decomposed on the Ni-rich cathode (LiNi0.8Co0.1Mn0.1O2, NCM811) to generate LiF/Li3N-rich cathode-electrolyte interphase (CEI) with high conductivity. The synergistic effect reduces the electrolyte decomposition and inhibits the transition metal (TM) dissolution. Meanwhile, NST promotes the creation of solid electrolyte interphase (SEI) rich in inorganics on the Li metal anode (LMA), which restrains the growth of Li dendrites, minimizes parasitic reactions, and fosters rapid Li+ transport. As a result, compared with the reference, the Li/LiNi0.8Co0.1Mn0.1O2 cell with 1.0 wt.% NST exhibits higher capacity retention after 200 cycles at 1C (86.4% vs. 64.8%) and better rate performance, even at 9C. In the presence of NST, the Li/Li symmetrical cell shows a super-stable cyclic performance beyond 500 h at 0.5 mA cm-2/0.5 mAh cm-2. These unique features of NST are a promising solution for addressing the interfacial deterioration issue of high-capacity Ni-rich cathodes paired with LMA.

4.
Vet Microbiol ; 293: 110073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579481

ABSTRACT

African swine fever virus (ASFV) is a large double stranded DNA arbovirus that is highly contagious and seriously endangers domestic and wild pigs. In the past decade, African swine fever (ASF) has spread in many countries in the Caucasus, Russian Federation, Eastern Europe and Asia, causing significant losses to the pig industry. At present, there is a lack of effective vaccine and treatment for ASF. Therefore, the rapid and accurate detection is crucial for ASF prevention and control. In this study, we have developed a portable lateral flow strip (LFS) detection mediated by recombinase polymerase amplification (RPA) and CRISPR/LwCas13a, which is performed at 37 ℃ and visualized by eyes without the need for complex instruments. This RPA-LwCas13a-LFS is based on the ASFV structural protein p17 gene (D117L), with a detection sensitivity up to 2 gene copies. This method is highly specific and has no cross reactivity to 7 other pig viruses. In the detection of two batches of 100 clinical samples, the p17 (D117L) RPA-LwCas13a-LFS had 100% coincidence with conventional quantitative PCR (qPCR). These findings demonstrate the potential of this simple, rapid, sensitive, and specific ASFV detection method for on-site ASFV detection.


Subject(s)
African Swine Fever Virus , African Swine Fever , CRISPR-Cas Systems , African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , Animals , Swine , African Swine Fever/virology , African Swine Fever/diagnosis , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/veterinary , Viral Structural Proteins/genetics
5.
Angew Chem Int Ed Engl ; 63(19): e202400761, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38497902

ABSTRACT

Lithium batteries employing Li or silicon (Si) anodes hold promise for the next-generation energy storage systems. However, their cycling behavior encounters rapid capacity degradation due to the vulnerability of solid electrolyte interphases (SEIs). Though anion-derived SEIs mitigate this degradation, the unavoidable reduction of solvents introduces heterogeneity to SEIs, leading to fractures during cycling. Here, we elucidate how the reductive stability of solvents, dominated by the electrophilicity (EPT) and coordination ability (CDA), delineates the SEI formed on Li or Si anodes. Solvents exhibiting lower EPT and CDA demonstrate enhanced tolerance to reduction, resulting in inorganic-rich SEIs with homogeneity. Guided by these criteria, we synthesized three promising solvents tailored for Li or Si anodes. The decomposition of these solvents is dictated by their EPTs under similar solvation structures, imparting distinct characteristics to SEIs and impacting battery performance. The optimized electrolyte, 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in N-Pyrrolidine-trifluoromethanesulfonamide (TFSPY), achieves 600 cycles of Si anodes with a capacity retention of 81 % (1910 mAh g-1). In anode-free Cu||LiNi0.5Co0.2Mn0.3O2 (NCM523) pouch cells, this electrolyte sustains over 100 cycles with an 82 % capacity retention. These findings illustrate that reducing solvent decomposition benefits SEI formation, offering valuable insights for the designing electrolytes in high-energy lithium batteries.

6.
Biol Direct ; 19(1): 21, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459605

ABSTRACT

BACKGROUND: Mammalian enabled (MENA) protein is a member of the enabled/vasodilator stimulated phosphoprotein (Ena/VASP) protein family, which regulates cytoplasmic actin network assembly. It plays a significant role in breast cancer invasion, migration, and resistance against targeted therapy and chemotherapy. However, its role in the efficacy of endocrine therapy for the hormone receptor-positive (HR+) breast cancer patients is not known. This study investigated the role of MENA in the resistance against tamoxifen therapy in patients with HR+ breast cancer and the underlying mechanisms. METHODS: MENA expression levels in the clinical HR+ breast cancer samples (n = 119) were estimated using immunohistochemistry (IHC) to determine its association with the clinicopathological features, tamoxifen resistance, and survival outcomes. Western blotting (WB) and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis was performed to estimate the MENA protein and mRNA levels in the tamoxifen-sensitive and -resistant HR+ breast cancer cell lines. Furthermore, CCK8, colony formation, and the transwell invasion and migration assays were used to analyze the effects of MENA knockdown on the biological behavior and tamoxifen sensitivity of the HR+ breast cancer cell lines. Xenograft tumor experiments were performed in the nude mice to determine the tumor growth rates and tamoxifen sensitivity of the control and MENA knockdown HR+ breast cancer cells in the presence and absence of tamoxifen treatment. Furthermore, we estimated the growth rates of organoids derived from the HR+ breast cancer patients (n = 10) with high and low MENA expression levels when treated with tamoxifen. RESULTS: HR+ breast cancer patients with low MENA expression demonstrated tamoxifen resistance and poorer prognosis compared to those with high MENA expression. Univariate and multivariate Cox regression analysis demonstrated that MENA expression was an independent predictor of tamoxifen resistance in patients with HR+ breast cancer. MENA knockdown HR+ breast cancer cells showed significantly reduced tamoxifen sensitivity in the in vitro experiments and the in vivo xenograft tumor mouse model compared with the corresponding controls. Furthermore, MENA knockdown increased the in vitro invasion and migration of the HR+ breast cancer cells. HR+ breast cancer organoids with low MENA expression demonstrated reduced tamoxifen sensitivity than those with higher MENA expression. Mechanistically, P-AKT levels were significantly upregulated in the MENA-knockdown HR + breast cancer cells treated with or without 4-OHT compared with the corresponding controls. CONCLUSIONS: This study demonstrated that downregulation of MENA promoted tamoxifen resistance in the HR+ breast cancer tissues and cells by enhancing the AKT signaling pathway. Therefore, MENA is a promising prediction biomarker for determining tamoxifen sensitivity in patients with HR+ breast cancer.


Subject(s)
Breast Neoplasms , Animals , Female , Humans , Mice , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Mammals/metabolism , Mice, Nude , Proto-Oncogene Proteins c-akt , Signal Transduction , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
7.
Curr Mol Med ; 2024 01 03.
Article in English | MEDLINE | ID: mdl-38178661

ABSTRACT

BACKGROUND: The pathology of Parkinson's disease (PD) indicates that iron deposition exists in dopaminergic neurons, which may be related to the death of cellular lipid iron peroxide. The extracellular autophagy adaptor SQSTM1(p62) of dopamine (DA) neurons can activate the intracellular Keap1-Nrf2-ARE signaling pathway to inhibit ferroptosis, which has a protective effect on DA neurons. OBJECTIVE: The objective of this study was to investigate the protective mechanism of the Keap1-Nrf2-ARE antioxidant pathway against iron death in dopaminergic neurons. METHODS: The experiment was divided into a control group (Control group), 1-methyl-4-phenylpyridiniumion control group (MPP+ Control group), p62 overexpression group (MPP+OV-p62), and p62 overexpression no-load group (MPP+ OV-P62-NC). The inhibitors brusatol and ZnPP inhibited the activation of NF-E2-related factor 2(Nrf2) and Heme oxygenase-1(HO-1), respectively, and were divided into brusatol group (MPP+OV-p62+brusatol) and ZnPP group (MPP+OV-p62+ZnPP). RT-qPCR was used to detect transfection efficiency, and Cell Counting Kit-8 (CCK8) was used to detect cell activity. FerroOrange, 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA), and Liperfluo probes were used to detect intracellular iron, reactive oxygen species (ROS), and lipid peroxidation (LPO) levels. Western Blotting detected the levels of Nrf2, HO-1, Kelch-like ECH-associated protein1 (Keap1), and their downstream Glutathione peroxidase 4(GPX4) and Acyl-CoA synthetase long-chain family member 4(ACSL4). The levels of L-Glutathione (GSH) and Malondialdehyde (MDA) were detected by GSH and MDA kits, and the activation of Keap1-Nrf2-ARE pathway was verified at the cellular level to have an antioxidant protective effect on iron death in dopaminergic neurons. RESULTS: (1) The results of RT-qPCR showed that compared with the control group, the expression of the p62 gene was significantly increased in the MPP+OV-p62 groups (p = 0.039), and the p62 gene was significantly increased in the brusatol and ZnPP groups, indicating successful transfection (p =0.002; p=0.008). (2) The immunofluorescence probe flow results showed that compared to the normal control group, the contents of three kinds of probes in MPP+ model group were significantly increased (p =0.001; p <0.001; p<0.001), and the contents of three kinds of probes in MPP+OV-p62 group were decreased compared to the MPP+ model group (p =0.004). The results indicated that the levels of iron, ROS, and LPO were increased in the MPP+ group and decreased in the MPP+OV-p62 group. (3) Compared with the control group, the expressions of Nrf2, HO-1, and GPX4 in the MPP+OV-p62 group were increased (p =0.007; p =0.004; p=0.010), and the expressions of Keap1 and ACSL4 in MPP+p62 overexpression group were decreased (p =0.017; p =0.005). Compared with the MPP+ control group, Nrf2 and GPX4 were increased in the MPP+OV-p62 group, and ACSL4 was decreased in the MPP+OV-p62 group (p =0.041; p <0.001; p <0.001). The results of the GSH and MDA kit showed that compared with the normal control group, the content of GSH in the MPP+ control group was decreased (p < 0.01), and the content of MDA was increased (p < 0.01). Compared with the MPP+ model group, GSH content was increased (P = 0.003), and MDA content was decreased in the MPP+OV-p62 group (p < 0.001). Nrf2, HO-1, and GPX4 increased in the MPP+p62 overexpression group but decreased in the brusatol group and ZnPP group (p < 0.001). CONCLUSION: Based on the transfection of P62 plasmid, it was found that P62 plasmid can inhibit the lipid peroxidation of iron death in dopaminergic nerve cells by activating the Nrf2 signaling pathway, thus playing a protective role in dopaminergic nerve cells.

8.
Animals (Basel) ; 13(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067063

ABSTRACT

African swine fever virus (ASFV) is a large double-stranded DNA virus that is highly infectious and seriously affects domestic pigs and wild boars. African swine fever (ASF) has caused huge economic losses to endemic countries and regions. At present, there is still a lack of effective vaccines and therapeutics. Therefore, rapid and accurate detection is essential for the prevention and control of ASF. The portable DNA endonuclease (Cas12a)-mediated lateral flow strip detection method (Cas12a-LFS) combined with recombinant polymerase amplification (RPA) has been gradually recognized as effective for virus detection including ASFV. In this study, based on the ASFV structural protein p17 gene (D117L), an RPA-Cas12a-LFS detection method was established. The detection method exhibits a sensitivity of up to two gene copies and has no cross-reaction with nine other swine viruses. Thus, the method is highly sensitive and specific. In 68 clinical samples, the coincidence rate of the p17 strip was 100%, compared to the traditional quantitative PCR (qPCR). In conclusion, we have developed a simple, rapid, sensitive, and specific ASFV visual detection method and demonstrated the potential of on-site detection of ASFV.

9.
Sci Rep ; 13(1): 17705, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848463

ABSTRACT

The presence of defects, such as pores, in materials processed using additive manufacturing represents a challenge during the manufacturing of many engineering components. Recently, ultrasonic vibration-assisted (UV-A) directed energy deposition (DED) has been shown to reduce porosity, promote grain refinement, and enhance mechanical performance in metal components. Whereas it is evident that the formation of such microstructural features is affected by the melt pool behavior, the specific mechanisms by which ultrasonic vibration (UV) influences the melt pool remain elusive. In the present investigation, UV was applied in situ to DED of 316L stainless steel single tracks and bulk parts. For the first time, high-speed video imaging and thermal imaging were implemented in situ to quantitatively correlate the application of UV to melt pool evolution in DED. Extensive imaging data were coupled with in-depth microstructural characterization to develop a statistically robust dataset describing the observed phenomena. Our findings show that UV increases the melt pool peak temperature and dimensions, while improving the wettability of injected particles with the melt pool surface and reducing particle residence time. Near the substrate, we observe that UV results in a 92% decrease in porosity, and a 54% decrease in dendritic arm spacing. The effect of UV on the melt pool is caused by the combined mechanisms of acoustic cavitation, ultrasound absorption, and acoustic streaming. Through in situ imaging we demonstrate quantitatively that these phenomena, acting simultaneously, effectively diminish with increasing build height and size due to acoustic attenuation, consequently decreasing the positive effect of implementing UV-A DED. Thus, this research provides valuable insight into the value of in situ imaging, as well as the effects of UV on DED melt pool dynamics, the stochastic interactions between the melt pool and incoming powder particles, and the limitations of build geometry on the UV-A DED technique.

10.
ACS Appl Mater Interfaces ; 15(40): 46941-46951, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37782685

ABSTRACT

Commercial Li-ion batteries use LiPF6-based carbonate electrolytes extensively, but there are many challenges associated with them, like dendritic Li growth and electrolyte decomposition, while supporting the aggressive chemical and electrochemical reactivity of lithium metal batteries (LMBs). This work proposes 1,1,1,3,3,3-hexafluoroisopropyl methacrylate (HFM) as a multifunctional electrolyte additive, constructing protective solid-/cathode-electrolyte interphases (SEI/CEI) on the surfaces for both lithium metal anode (LMA) and Ni-rich cathode to solve these challenges simultaneously. The highly fluorinated group (-CF3) of the HFM molecule contributes to the construction of SEI/CEI films rich in LiF that offer excellent electronic insulation, high mechanical strength, and surface energy. Accordingly, the HFM-derived LiF-rich interphases can minimize the electrolyte-electrode parasitic reactions and promote uniform Li deposition. Also, the problems of LiNi0.8Co0.1Mn0.1O2 particles' inner microcrack evolution and the growth of dendritic Li are adequately addressed. Consequently, the HFM additive enables a Li/LiNi0.8Co0.1Mn0.1O2 cell with higher capacity retention after 200 cycles at 1 C than the cell with no additive (74.7 vs 52.8%), as well as a better rate performance, especially at 9 C. Furthermore, at 0.5/0.5 mAh cm-2, the Li/Li symmetrical battery displays supersteadfast cyclic performance beyond 500 h when HFM is present. For high-performance LMBs, the HFM additive offers a straightforward, cost-effective route.

11.
J Biol Chem ; 299(10): 105213, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660925

ABSTRACT

The cyclic GMP-AMP synthase and stimulator of interferon (IFN) genes (cGAS-STING) pathway serves as a crucial component of innate immune defense and exerts immense antiviral activity by inducing the expression of type I IFNs. Currently, STING-activated production of type I IFNs has been thought to be mediated only by TANK-binding kinase 1 (TBK1). Here, we identified that porcine IKKε (pIKKε) is also directly involved in STING-induced type I IFN expression and antiviral response by using IKKε-/- porcine macrophages. Similar to pTBK1, pIKKε interacts directly with pSTING on the C-terminal tail. Furthermore, the TBK1-binding motif of pSTING C-terminal tail is essential for its interaction with pIKKε, and within the TBK1-binding motif, the leucine (L) 373 is also critical for the interaction. On the other hand, both kinase domain and scaffold dimerization domain of pIKKε participate in the interactions with pSTING. Consistently, the reconstitution of pIKKε and its mutants in IKKε-/- porcine macrophages corroborated that IKKε and its kinase domain and scaffold dimerization domain are all involved in the STING signaling and antiviral function. Thus, our findings deepen the understanding of porcine cGAS-STING pathway, which lays a foundation for effective antiviral therapeutics against porcine viral diseases.

12.
Animals (Basel) ; 13(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37627364

ABSTRACT

It has been recently recognized that the DNA sensing innate immune cGAS-STING pathway exerts an IFN-independent antiviral function; however, whether and how chicken STING (chSTING) exerts such an IFN-independent antiviral activity is still unknown. Here, we showed that chSTING exerts an antiviral activity in HEK293 cells and chicken cells, independent of IFN production. chSTING was able to trigger cell apoptosis and autophagy independently of IFN, and the apoptosis inhibitors, rather than autophagy inhibitors, could antagonize the antiviral function of chSTING, suggesting the involvement of apoptosis in IFN-independent antiviral function. In addition, chSTING lost its antiviral function in IRF7-knockout chicken macrophages, indicating that IRF7 is not only essential for the production of IFN, but also participates in the other activities of chSTING, such as the apoptosis. Collectively, our results showed that chSTING exerts an antiviral function independent of IFN, likely via apoptosis.

13.
Viruses ; 15(8)2023 07 26.
Article in English | MEDLINE | ID: mdl-37631972

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has caused great damage to the global pig industry. Innate immunity plays a significant role in resisting viral infection; however, the exact role of innate immunity in the anti-PEDV response has not been fully elucidated. In this study, we observed that various porcine innate immune signaling adaptors are involved in anti-PEDV (AJ1102-like strain) activity in transfected Vero cells. Among these, TRIF and MAVS showed the strongest anti-PEDV activity. The endogenous TRIF, MAVS, and STING were selected for further examination of anti-PEDV activity. Agonist stimulation experiments showed that TRIF, MAVS, and STING signaling all have obvious anti-PEDV activity. The siRNA knockdown assay showed that TRIF, MAVS, and STING are also all involved in anti-PEDV response, and their remarkable effects on PEDV replication were confirmed in TRIF-/-, MAVS-/- and STING-/- Vero cells via the CRISPR approach. For further verification, the anti-PEDV activity of TRIF, MAVS, and STING could be reproduced in porcine IPEC-DQ cells treated with siRNAs. In summary, this study reveals that multiple pattern-recognition receptor (PRR) signaling pathways of porcine innate immunity play an important role in the anti-PEDV infection, providing new and useful antiviral knowledge for prevention and control of PEDV spreading.


Subject(s)
Porcine epidemic diarrhea virus , Chlorocebus aethiops , Swine , Animals , Vero Cells , Signal Transduction , Immunity, Innate , RNA, Small Interfering/genetics , Adaptor Proteins, Vesicular Transport
14.
J Colloid Interface Sci ; 652(Pt A): 490-499, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37604060

ABSTRACT

Solid-state Li metal batteries (SSLMBs) are promising solutions for the next-generation energy storage devices with high energy densities and safety. Accordingly, the advanced solid-state electrolytes are further needed to address the challenges-low ionic conductivity, poor interfacial compatibility and uncontrollably Li dendrites, boosting the electrochemical and safety performances of SSLMBs. Herein, a "flexible and rigid" strategy is proposed to enhance the electrochemical and mechanical properties of polyethylene oxide (PEO)-based electrolytes. Specifically, the flexible poly-1,3-dioxolane (poly-DOL) and rigid graphitic carbon nitride (g-C3N4) are coordinated by a coupling reaction to prepare g-C3N4-poly-DOL, which is further employed as the filler for the PEO matrix to fabricate a composite polymer electrolyte g-C3N4-pDOL-PEO. The flexible poly-DOL and rigid g-C3N4 together endow the PEO-based electrolyte with good interfacial stability, high ion-conductivity and strong mechanical strength. Consequently, the Li/g-C3N4-pDOL-PEO/LiFePO4 cell delivers high cyclability with a capacity retention ratio of 89.7 % after 150 cycles and an average Coulombic efficiency over 99.9 %, and, the Li/g-C3N4-pDOL-PEO/Li cell can stably cycle beyond 300 h at 0.2 mAh cm-2 with small polarization (13 mV). The "flexible and rigid" strategy coupling the polymer with the filler provides an effective electrolyte design for high-performance SSLMBs.

15.
Small ; 19(44): e2301327, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37415572

ABSTRACT

The systematical understanding of metal-dependent activity in electrocatalyzing oxygen reduction reaction (ORR), a vital reaction with sluggish kinetics for zinc-air batteries, remains quite unclear. An atomic and spatial engineering modulating ORR activity over hollow carbon quasi-sphere (HCS) confined in a series of single M-N (M = Cu, Mn, Ni) sites is reported here. Based on the theoretical prediction and experimental validation, Cu-N4 site with the lowest overpotential shows a better ORR kinetics than Mn-N4 and Ni-N4 . The ORR activity of single-atom Cu center can be further improved by decreasing the coordination number of N to two, namely Cu-N2 , due to the enhancement of electrons with lower coordination structure. Benefitting from the unique spatial confinement effect of the HCS structure in modulating electronic feature of active sites, the Cu-N2 site confined in HCS also delivers highly improved ORR kinetics and activity relative to that on planner graphene. Additionally, the best catalyst holds excellent promise in the application of zinc-air batteries. The findings will pave a new way to atomically and electronically tune active sites with high efficiency for other single-atom catalysts.

16.
J Colloid Interface Sci ; 645: 45-54, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37146378

ABSTRACT

Solid-state Li metal batteries (SSLMBs) are one of the most promising energy storage devices, as they offer high energy density and improved safety compared to conventional Li-ion batteries. However, the large-scale application of SSLMBs at room temperature is restricted by the main challenges such as low ionic conductivity and poor cyclic performance. Herein, a composed polymer-in-salt electrolyte (CPISE) is fabricated, which is composed of polyvinylidene vinylidene hexafluoropropene (PVDF-HFP) and high-concentration Li bis(trifluoromethanesulphonyl)imide (LiTFSI), reinforced with natural halloysite nanotubes (HNTs). The High concentration of LiTFSI and introduced HNTs synergized with PVDF-HFP to provide more various Li+ transport pathways. Additionally, the backbones of the uniform dispersion of HNTs in the CPISE effectively boosts the physicochemical nature of the CPISE. As a result, the prepared CPISE achieves excellent mechanical strength, high ionic conductivity (1.23*10-3 S cm-1) and high Li+ transference number (0.57) at room temperature. Consequently, in existence of the CPISE, the Li symmetric cell cycles stably beyond 800 h at 0.15 mA cm-2 and the LiFePO4/Li cell displays impressive cyclic performance with capacity retention of 79% after 1000 cycles at 30 °C. Furthermore, the superiority and the functional mechanism of the CPISE are discovered in detail. This work provides a promising strategy for the development of high-performance SSMLBs at room temperature.

17.
J Colloid Interface Sci ; 644: 415-425, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37126891

ABSTRACT

Lithium (Li) metal batteries (LMBs), paired with high-energy-density cathode materials, are promising to meet the ever-increasing demand for electric energy storage. Unfortunately, the inferior electrode-electrolyte interfaces and hydrogen fluoride (HF) corrosion in the state-of-art carbonate-based electrolytes lead to dendritic Li growth and unsatisfactory cyclability of LMBs. Herein, a multifunctional electrolyte additive triallylamine (TAA) is proposed to circumvent those issues. The TAA molecule exhibits strong nucleophilicity and contains three unsaturated carbon-carbon double bonds, the former for HF elimination, the later for in-situ passivation of aggressive electrodes. As evidenced theoretically and experimentally, the preferential oxidation and reduction of carbon-carbon double bonds enable the successful regulation of components and morphologies of electrode interfaces, as well as the binding affinity to HF effectively blocks HF corrosion. In particular, the TAA-derived electrode interfaces are packed with abundant lithium-containing inorganics and oligomers, which diminishes undesired parasitic reactions of electrolyte and detrimental degradation of electrode materials. When using the TAA-containing electrolyte, the cell configuration with Li anode and nickel-rich layered oxide cathode and symmetrical Li cell deliver remarkably enhanced electrochemical performance with regard to the additive-free cell. The TAA additive shows great potential in advancing the development of carbonate-based electrolytes in LMBs.

19.
Front Immunol ; 14: 1095457, 2023.
Article in English | MEDLINE | ID: mdl-36923408

ABSTRACT

Introduction: Circular RNAs (circRNAs) have been linked to regulate macrophage polarization and subsequent inflammation in sepsis. However, the underlying mechanism and the function of circRNAs in macrophage pyroptosis in pneumonia-induced sepsis are still unknown. Methods: In this study, we screened the differentially expressed circRNAs among the healthy individuals, pneumonia patients without sepsis and pneumonia-induced sepsis patients in the plasma by RNA sequencing (RNA-seq). Then we evaluated macrophage pyroptosis in sepsis patients and in vitro LPS/nigericin activated THP-1 cells. The lentiviral recombinant vector for circ_0075723 overexpression (OE-circ_0075723) and circ_0075723 silence (sh-circ_0075723) were constructed and transfected into THP-1 cells to explore the potential mechanism of circ_0075723 involved in LPS/nigericin induced macrophage pyroptosis. Results: We found circ_0075723, a novel circRNA that was significantly downregulated in pneumonia-induced sepsis patients compared to pneumonia patients without sepsis and healthy individuals. Meanwhile, pneumonia-induced sepsis patients exhibited activation of NLRP3 inflammasome and production of the pyroptosis-associated pro-inflammatory cytokines IL-1ß and IL-18. circ_0075723 inhibited macrophage pyroptosis via sponging miR-155-5p which promoted SHIP1 expression directly. Besides, we found that circ_0075723 in macrophages promoted VE-cadherin expression in endothelial cells through inhibiting the release of NLRP3 inflammasome-related cytokines, IL-1ß and IL-18, and protects endothelial cell integrity. Discussion: Our findings propose a unique approach wherein circ_0075723 suppresses macrophage pyroptosis and inflammation in pneumonia-induced sepsis via sponging with miR-155-5p and promoting SHIP1 expression. These findings indicate that circRNAs could be used as possible potential diagnostic and therapeutic targets for pneumonia-induced sepsis.


Subject(s)
MicroRNAs , Pneumonia , Sepsis , Humans , Cytokines , Endothelial Cells , Inflammasomes/genetics , Inflammation , Interleukin-18 , Lipopolysaccharides , MicroRNAs/genetics , Nigericin , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis/genetics , RNA, Circular/genetics , Sepsis/genetics
20.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36992355

ABSTRACT

The innate immune system is the first line of host defense sensing viral infection. Manganese (Mn) has recently been found to be involved in the activation of the innate immune DNA-sensing cGAS-STING pathway and subsequent anti-DNA virus function. However, it is still unclear whether Mn2+ mediates host defense against RNA viruses. In this study, we demonstrate that Mn2+ exhibited antiviral effects against various animal and human viruses, including RNA viruses such as PRRSVs and VSV, as well as DNA viruses such as HSV1, in a dose-dependent manner. Moreover, cGAS and STING were both investigated in the Mn2+ mediated antiviral roles using the knockout cells made by the CRISPR-Cas9 approach. Unexpectedly, the results revealed that neither cGAS knockout nor STING knockout had any effect on Mn2+-mediated antiviral functions. Nevertheless, we verified that Mn2+ promoted the activation of the cGAS-STING signaling pathway. These findings suggest that Mn2+ has broad-spectrum antiviral activities in a cGAS-STING pathway independent manner. This study also provides significant insights into redundant mechanisms participating in the Mn2+ antiviral functions, and also indicates a new target for Mn2+ antiviral therapeutics.


Subject(s)
Antiviral Agents , Immunity, Innate , Manganese , Animals , Humans , Antiviral Agents/pharmacology , DNA Viruses/metabolism , Manganese/pharmacology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction , Membrane Proteins/genetics , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...