Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Clin Cancer Res ; 29(23): 4822-4829, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37733788

ABSTRACT

PURPOSE: The aim of this study is to investigate whether near-infrared spectral tomography (NIRST) might serve as a reliable prognostic tool to predict residual cancer burden (RCB) in patients with breast cancer undergoing neoadjuvant chemotherapy (NAC) based upon early treatment response measurements. EXPERIMENTAL DESIGN: A total of thirty-five patients with breast cancer receiving NAC were included in this study. NIRST imaging was performed at multiple time points, including: before treatment, at end of the first cycle, at the mid-point, and post-NAC treatments. From reconstructed NIRST images, average values of total hemoglobin (HbT) were obtained for both the tumor region and contralateral breast at each time point. RCB scores/classes were assessed by a pathologist using histologic slides of the surgical specimen obtained after completing NAC. Logistic regression of the normalized early percentage change of HbT in the tumor region (ΔHbT%) was used to predict RCB and determine its significance as an indicator for differentiating cases within each RCB class. RESULTS: The ΔHbT% at the end of the first cycle, as compared with pretreatment levels, showed excellent prognostic capability in differentiating RCB-0 from RCB-I/II/III or RCB-II from RCB-0/I/III (P < 0.001). Corresponding area under the curve (AUC) values for these comparisons were 0.97 and 0.94, and accuracy values were 0.90 and 0.83, respectively. CONCLUSIONS: NIRST holds promise as a potential clinical tool that can be seamlessly integrated into existing clinical workflow within the infusion suite. By providing early assessment of RCB, NIRST has potential to improve breast cancer patient management strategies.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy , Neoplasm, Residual/pathology , Breast/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Tomography
2.
J Biomed Opt ; 28(6): 065006, 2023 06.
Article in English | MEDLINE | ID: mdl-37396684

ABSTRACT

Significance: Resealing time based loading efficiency of optoporation is the key parameter for drug or gene delivery. This work describes a comparatively simple optical approach to directly measure the cell membrane resealing time of the gold nanoparticle mediated photoporation. Aim: To establish a membrane potential detection optical system, which can provide a direct measurement of resealing time of the optoporated cells. Approach: Voltage sensitive dye has been used to label the gold nanoparticle covered cell before laser activation and the resealing time was estimated from the voltage change due to the fluorescence light intensity change before and after laser activation. The approach has been validated by the simulated data based on diffusion model and Monte Carlo simulation and the experimental data obtained from a flow cytometry analysis. Results: The measured resealing time after perforation varied from 28.6 to 163.8 s on Hela cells when the irradiation fluence was increased, with a correlation coefficient (R2) of 0.9938. This result is in agreement with the resealing time (1-2 min) of photothermal porated Hela cells measured by electrical impedance method. The intracellular delivery efficiency of extracellular macromolecular under the same irradiation fluence depends mainly on diffusion velocity rather than pore size. Conclusion: The method described here can be used to directly measure resealing time of optoporated cells for accurately estimating the loading efficiency on discovering the mechanism of optoporation.


Subject(s)
Gold , Metal Nanoparticles , Animals , Humans , HeLa Cells , Cell Membrane , Pharmaceutical Preparations/metabolism , Mammals
3.
J Biomed Opt ; 28(4): 046006, 2023 04.
Article in English | MEDLINE | ID: mdl-37091909

ABSTRACT

Significance: Tissue phantoms that mimic the optical and radiologic properties of human or animal tissue play an important role in the development, characterization, and evaluation of imaging systems. Phantoms that are easily produced and stable for longitudinal studies are highly desirable. Aim: A new type of long-lasting phantom was developed with commercially available materials and was assessed for fabrication ease, stability, and optical property control. Magnetic resonance imaging (MRI) and x-ray computed tomography (CT) contrast properties were also evaluated. Approach: A systematic investigation of relationships between concentrations of skin-like pigments and composite optical properties was conducted to realize optical property phantoms in the red and near-infrared (NIR) wavelength range that also offered contrast for CT and MRI. Results: Phantom fabrication time was < 1 h and did not involve any heating or cooling processes. Changes in optical properties were < 2 % over a 12-month period. Phantom optical and spectral features were similar to human soft tissue over the red to NIR wavelength ranges. Pigments used in the study also had CT and MRI contrasts for multimodality imaging studies. Conclusions: The phantoms described here mimic optical properties of soft tissue and are suitable for multimodality imaging studies involving CT or MRI without adding secondary contrast agents.


Subject(s)
Contrast Media , Tomography, Optical , Animals , Humans , Multimodal Imaging , Tomography, X-Ray Computed , Phantoms, Imaging , Magnetic Resonance Imaging
4.
Article in English | MEDLINE | ID: mdl-37034554

ABSTRACT

Accelerating innovation in the space of fluorescence imaging for surgical applications has increased interest in safely and expediently advancing these technologies to clinic through Food and Drug Administration-(FDA-) compliant trials. Conventional metrics for early phase trials include drug safety, tolerability, dosing, and pharmacokinetics. Most procedural imaging technologies rely on administration of an exogenous fluorophore and concurrent use of an imaging system; both of which must receive FDA approval to proceed to clinic. Because fluorophores are classified as medical imaging agents, criteria for establishing dose are different, and arguably more complicated, than therapeutic drugs. Since no therapeutic effect is desired, medical imaging agents are ideally administered at the lowest dose that achieves adequate target differentiation. Because procedural imaging modalities are intended to enhance and/or ease proceduralists' identification or assessment of tissues, beneficial effects of these technologies may manifest in the form of qualitative endpoints such as: 1) confidence; 2) decision-making; and 3) satisfaction with the specified procedure. Due to the rapid expansion of medical imaging technologies, we believe that our field requires standardized criteria to evaluate existing and emerging technologies objectively so that both quantitative and qualitative aspects of their use may be measured and useful comparisons to assess their relative value may occur. Here, we present a 15-item consensus-based survey instrument to assess the utility of novel imaging technologies from the proceduralist's standpoint.

5.
Article in English | MEDLINE | ID: mdl-37034556

ABSTRACT

Indocyanine green (ICG)-based dynamic contrast-enhanced fluorescence imaging (DCE-FI) can objectively assess bone perfusion intraoperatively. However, it is susceptible to motion artifacts due to patient's involuntary respiration during the 4.5-minute DCE-FI data acquisition. An automated motion correction approach based on mutual information (MI) frameby-frame was developed to overcome this problem. In this approach, MIs were calculated between the reference and the adjacent frame translated and the maximal MI corresponded to the optimal translation. The images obtained from eighteen amputation cases were utilized to validate the approach and the results show that this correction can significantly reduce the motion artifacts and can improve the accuracy of bone perfusion assessment.

6.
Article in English | MEDLINE | ID: mdl-37056956

ABSTRACT

Following orthopaedic trauma, bone devitalization is a critical determinant of complications such as infection or nonunion. Intraoperative assessment of bone perfusion has thus far been limited. Furthermore, treatment failure for infected fractures is unreasonably high, owing to the propensity of biofilm to form and become entrenched in poorly vascularized bone. Fluorescence-guided surgery and molecularly-guided surgery could be used to evaluate the viability of bone and soft tissue and detect the presence of planktonic and biofilm-forming bacteria. This proceedings paper discusses the motivation behind developing this technology and our most recent preclinical and clinical results.

7.
Molecules ; 28(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903492

ABSTRACT

Poly(vinylidene fluoride) was grafted with maleic anhydride through reactive extrusion by using diisopropyl benzene peroxide as an initiator and 9-vinyl anthracene as a stabilizer. Effects of various parameters on grafting degree were investigated including the amounts of monomer, initiator and stabilizer. The maximum extent of grafting achieved was 0.74%. The graft polymers were characterized using FTIR, water contact angle, thermal, mechanical and XRD studies. Improved hydrophilic and mechanical properties were observed for graft polymers.

8.
OTA Int ; 5(4): e222, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36569105

ABSTRACT

Bone devitalization is believed to be a critical determinant of complications such as infection or nonunion. However, intraoperative assessment of bone devitalization, particularly in open fractures and infections, remains highly subjective resulting in variation in treatment. Optical imaging tools, particularly dynamic contrast-enhanced fluorescence imaging, can provide real-time, intraoperative assessment of bone and soft tissue perfusion, which informs the tissues' ability to heal and fight infection. We describe a novel technique to apply indocyanine green-based fluorescence imaging, using a device that is frequently used in the operating room to assess skin or flap perfusion in plastic surgery, to assess bone and deep tissue perfusion in three pertinent cases: (1) a chronic infection/nonunion after a Gustilo type 3A tibia fracture (patient 1), (2) an acute Gustilo type 3C tibia open fracture with extensive degloving/soft tissue stripping (patient 2), and (3) an atrophic nonunion of the humerus (patient 3). In all three cases, fluorescence imaging (both time-specific fluorescence and maximum fluorescence) and derived kinetic maps of time-to-peak, ingress slope, and egress slope demonstrated clear spatial variation in perfusion that corresponded to the patient pathogenesis. The impact of this information on patient outcome will need to be evaluated in future clinical trials; however, these cases demonstrate in principle that optical imaging information has the potential to inform surgical practice, reduce the variation in treatment, and improve outcomes observed in these challenging patients.

9.
Article in English | MEDLINE | ID: mdl-36061412

ABSTRACT

ICG-based dynamic contrast-enhanced fluorescence imaging (DCE-FI) and intraoperative DCE- magnetic resonance imaging (MRI) have been carried out nearly simultaneously in three lower extremity bone infection cases to investigate the relationship between these two imaging modalities for assessing bone blood perfusion during open orthopedic surgeries. Time-intensity curves in the corresponding regions of interest of two modalities were derived for comparison. The results demonstrated that ICG-based DCE-FI has higher sensitivity to perfusion changes while DCE-MRI provides superior and supplemental depth-related perfusion information. Research applying the depth-related perfusion information derived from MRI to improve the overall analytic modeling of intraoperative DCE-FI is ongoing.

10.
Biomed Opt Express ; 13(6): 3171-3186, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35781962

ABSTRACT

Dynamic contrast-enhanced fluorescence imaging (DCE-FI) classification of tissue viability in twelve adult patients undergoing below knee leg amputation is presented. During amputation and with the distal bone exposed, indocyanine green contrast-enhanced images were acquired sequentially during baseline, following transverse osteotomy and following periosteal stripping, offering a uniquely well-controlled fluorescence dataset. An unsupervised classification machine leveraging 21 different spatiotemporal features was trained and evaluated by cross-validation in 3.5 million regions-of-interest obtained from 9 patients, demonstrating accurate stratification into normal, suspicious, and compromised regions. The machine learning (ML) approach also outperformed the standard method of using fluorescence intensity only to evaluate tissue perfusion by a two-fold increase in accuracy. The generalizability of the machine was evaluated in image series acquired in an additional three patients, confirming the stability of the model and ability to sort future patient image-sets into viability categories.

11.
Optica ; 9(3): 264-267, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35340570

ABSTRACT

Non-invasive near-infrared spectral tomography (NIRST) can incorporate the structural information provided by simultaneous magnetic resonance imaging (MRI), and this has significantly improved the images obtained of tissue function. However, the process of MRI guidance in NIRST has been time consuming because of the needs for tissue-type segmentation and forward diffuse modeling of light propagation. To overcome these problems, a reconstruction algorithm for MRI-guided NIRST based on deep learning is proposed and validated by simulation and real patient imaging data for breast cancer characterization. In this approach, diffused optical signals and MRI images were both used as the input to the neural network, and simultaneously recovered the concentrations of oxy-hemoglobin, deoxy-hemoglobin, and water via end-to-end training by using 20,000 sets of computer-generated simulation phantoms. The simulation phantom studies showed that the quality of the reconstructed images was improved, compared to that obtained by other existing reconstruction methods. Reconstructed patient images show that the well-trained neural network with only simulation data sets can be directly used for differentiating malignant from benign breast tumors.

12.
Nat Commun ; 13(1): 500, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35079023

ABSTRACT

Thin-film composite membranes formed by conventional interfacial polymerization generally suffer from the depth heterogeneity of the polyamide layer, i.e., nonuniformly distributed free volume pores, leading to the inefficient permselectivity. Here, we demonstrate a facile and versatile approach to tune the nanoscale homogeneity of polyamide-based thin-film composite membranes via inorganic salt-mediated interfacial polymerization process. Molecular dynamics simulations and various characterization techniques elucidate in detail the underlying molecular mechanism by which the salt addition confines and regulates the diffusion of amine monomers to the water-oil interface and thus tunes the nanoscale homogeneity of the polyamide layer. The resulting thin-film composite membranes with thin, smooth, dense, and structurally homogeneous polyamide layers demonstrate a permeance increment of ~20-435% and/or solute rejection enhancement of ~10-170% as well as improved antifouling property for efficient reverse/forward osmosis and nanofiltration separations. This work sheds light on the tunability of the polyamide layer homogeneity via salt-regulated interfacial polymerization process.

13.
J Virol Methods ; 298: 114290, 2021 12.
Article in English | MEDLINE | ID: mdl-34543695

ABSTRACT

A rapid and accurate diagnosis of mixed viral infections is important for providing timely therapeutic interventions. The aim of this study was to develop a highly sensitive and specific method for the simultaneous detection of canine distemper virus (CDV), canine parvovirus (CPV) and canine coronavirus (CCV) in mixed infections by combining the high specificity of a dual priming oligonucleotide (DPO) primer system with the high sensitivity of a nanoparticle-assisted PCR (nanoPCR) assay. Under the optimised assay conditions, the multiplex DPO-nanoPCR assay developed using DPO primers was 100-fold more sensitive than the multiplex PCR assay using conventional primers. The detection limits of the multiplex DPO-nanoPCR assay for the recombinant plasmids containing the cloned CDV, CPV and CCV target sequences were 5.4 × 102, 6.5 × 102 and 1.6 × 102 copies in a 25 µL assay, respectively. No cross-reaction with other canine viruses was observed. This is the first reported use of a multiplex nanoPCR assay with the DPO primer system for the simultaneous detection of CDV, CPV and CCV in mixed infections. The high sensitivity and specificity of the assay indicated its potential for use in clinical diagnosis and field surveillance of animal epidemics.


Subject(s)
Distemper Virus, Canine , Epidemics , Nanoparticles , Parvovirus, Canine , Viruses , Animals , Distemper Virus, Canine/genetics , Dogs , Multiplex Polymerase Chain Reaction , Oligonucleotides , Parvovirus, Canine/genetics , Sensitivity and Specificity
14.
Comp Immunol Microbiol Infect Dis ; 77: 101676, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34091279

ABSTRACT

To understand the epidemic status of feline bocavirus (FBoV) in Anhui Province, eastern China, FBoV was successfully extracted from fecal samples of domestic cats, and five complete genomes were amplified in this study. Phylogenetic analysis showed that these five strains belong to three different FBoV genotypes. Recombination analysis showed that inter- and intra-genotype recombination events occurred. Selection pressure and codon usage bias analyses indicated that FBoV-1 and FBoV-3 continuously evolve toward adaptation, and selection pressure is the main factor for codon usage bias during evolution. This study provides the first molecular evidence of FBoV prevalence in eastern China, further enriching the available information on its genetics and evolutionary characteristics and providing a basis for further research on its evolution.


Subject(s)
Bocavirus , Animals , Bocavirus/genetics , Cats , China/epidemiology , Evolution, Molecular , Feces , Genotype , Phylogeny
15.
J Virol Methods ; 290: 114066, 2021 04.
Article in English | MEDLINE | ID: mdl-33453300

ABSTRACT

A duplex SYBR Green I-based real-time PCR assay was established for the simultaneous detection of canine kobuvirus (CaKoV) and canine astrovirus (CaAstV). This assay can easily distinguish the two viruses according to their different melting temperatures (Tm) of 80 °C for CaKoV and 86.5 °C for CaAstV; other canine enteroviruses used as controls showed no specific melting peaks. The detection limit of this assay was determined to be 101 copies/µL for both viruses. This method exhibited high repeatability and reproducibility, with a coefficient of variation less than 1.5 %. A total of 48 fecal samples were collected for clinical testing by real-time PCR and confirmed by sequencing. Real-time PCR assay showed a 10.4 % CaKoV-positive rate and a 4.2 % CaAstV-positive rate, and the positive rate of co-infection of the two viruses was 2.1 %, which was consistent with the sequencing results. This assay has many advantages over conventional PCR: it is rapid, sensitive, specific, and reliable for detecting these two viruses in one sample, and it can be used as a tool to detect CaKoV and CaAstV infection or co-infection in clinical settings.


Subject(s)
Kobuvirus , Real-Time Polymerase Chain Reaction , Animals , Benzothiazoles , Diamines , Dogs , Kobuvirus/genetics , Organic Chemicals , Quinolines , Reproducibility of Results , Sensitivity and Specificity
16.
3 Biotech ; 11(2): 61, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33457175

ABSTRACT

Feline bocavirus 1 (FBoV-1) may be associated with diarrhea in cats. In this study, a SYBR Green I-based quantitative polymerase chain reaction (qPCR) assay was established to detect FBoV-1. The melting curve showed a single melting peak at 83.0 â„ƒ. The results of sensitivity showed that the detection limit of the qPCR was 3.87 × 101 copies/µL. Of note, the detection limit of the conventional polymerase chain reaction (cPCR) was 3.87 × 103 copies/µL. The highest intra-assay and inter-assay coefficients of variation (CV%) were 0.98% and 1.42%, respectively. The positive detection rate of 128 clinical samples using the qPCR and the cPCR was 7.0% (9/128) and 4.7% (6/128), respectively. Taken together, these results indicated that the established qPCR assay has good sensitivity, high specificity, and good reproducibility. Therefore, it could provide support for the rapid and efficient clinical detection of FBoV-1.

17.
Article in English | MEDLINE | ID: mdl-36082047

ABSTRACT

Forty two patients with high energy open fractures were involved into the study to investigate whether an indocyanine green (ICG)-based dynamic contrast-enhanced fluorescence imaging (DCE-FI) can be used to objectively assess bone perfusion and guide surgical debridement. For each patient, fluorescence images were recorded after 0.1 mg/kg of ICG was administered intravenously. By utilizing a bone-specific kinetic model to the video sequences, the perfusion-related metrics were calculated. The results of this study shown that the quantitative ICG-based DEC-FI can accurately assess the human bone perfusion during the orthopedic surgery.

18.
Biomed Opt Express ; 12(12): 7657-7672, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-35003858

ABSTRACT

Integration of magnetic resonance imaging (MRI) and near-infrared spectral tomography (NIRST) has yielded promising diagnostic performance for breast imaging in the past. This study focused on whether MRI-guided NIRST can quantify hemoglobin concentration using only continuous wave (CW) measurements. Patients were classified into four breast density groups based on their MRIs. Optical scattering properties were assigned based on average values obtained from these density groups, and MRI-guided NIRST images were reconstructed from calibrated CW data. Total hemoglobin (HbT) contrast between suspected lesions and surrounding normal tissue was used as an indicator of the malignancy. Results obtained from simulations and twenty-four patient cases indicate that the diagnostic power when using only CW data to differentiate malignant from benign abnormalities is similar to that obtained from combined frequency domain (FD) and CW data. These findings suggest that eliminating FD detection to reduce the cost and complexity of MRI-guided NIRST is possible.

19.
Int J Radiat Oncol Biol Phys ; 109(2): 603-613, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33002542

ABSTRACT

PURPOSE: The extreme microscopic heterogeneity of tumors makes it difficult to characterize tumor hypoxia. We evaluated how changes in the spatial resolution of oxygen imaging could alter measures of tumor hypoxia and their correlation to radiation therapy response. METHODS AND MATERIALS: Cherenkov-Excited Luminescence Imaging in combination with an oxygen probe, Oxyphor PtG4 was used to directly image tumor pO2 distributions with 0.2 mm spatial resolution at the time of radiation delivery. These pO2 images were analyzed with variations of reduced spatial resolution from 0.2 mm to 5 mm, to investigate the influence of how reduced imaging spatial resolution would affect the observed tumor hypoxia. As an in vivo validation test, mice bearing tumor xenografts were imaged for hypoxic fraction and median pO2 to examine the predictive link with tumor response to radiation therapy, while accounting for spatial resolution. RESULTS: In transitioning from voxel sizes of 200 µm to 3 mm, the median pO2 values increased by a few mm Hg, and the hypoxic fraction decreased by more than 50%. When looking at radiation-responsive tumors, the median pO2 values changed just a few mm Hg as a result of treatment, and the hypoxic fractions changed by as much as 50%. This latter change, however, could only be seen when sampling was performed with high spatial resolution. Median pO2 or similar quantities obtained from low resolution measurements are commonly used in clinical practice, however these parameters are much less sensitive to changes in the tumor microenvironment than the tumor hypoxic fraction obtained from high-resolution oxygen images. CONCLUSIONS: This study supports the hypothesis that for adequate measurements of the tumor response to radiation therapy, oxygen imaging with high spatial resolution is required to accurately characterize the hypoxic fraction.


Subject(s)
Optical Imaging , Oxygen/metabolism , Signal-To-Noise Ratio , Tumor Hypoxia/radiation effects , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Luminescence , Mice
20.
J Virol Methods ; 288: 114012, 2021 02.
Article in English | MEDLINE | ID: mdl-33157149

ABSTRACT

In this study, a SYBR Green I-based real-time reverse transcription-polymerase chain reaction (RT-PCR) was developed for the clinical diagnosis of feline astroviruses (FeAstVs). Specific primers were designed based on the conserved region of the FeAstV ORF1b gene. Experiments for specificity, sensitivity, and repeatability of the assay were carried out. In addition, the assay was evaluated using clinical samples. Specificity analysis indicated that the assay showed negative results with samples of Feline Parvovirus, Feline Herpesvirus, Feline Calicivirus, Feline Bocavirus, and Feline Coronavirus, indicating good specificity of the assay. Sensitivity analysis showed that the SYBR Green I-based real-time RT-PCR method could detect as low as 3.72 × 101 copies/µL of template, which is 100-fold more sensitive compared to the conventional RT-PCR. Both intra-assay and inter-assay variability were lower than 1 %, indicating good reproducibility. Furthermore, an analysis of 150 fecal samples showed that the positive detection rate of SYBR Green I-based real-time RT-PCR was higher than that of the conventional RT-PCR, indicating the high reliability of the method. The assay is cheap and effective. Therefore, it could provide support for the detection of FeAstV in large-scale clinical testing and epidemiological investigation.


Subject(s)
Astroviridae/genetics , Cat Diseases/diagnosis , Cat Diseases/virology , Organic Chemicals , Real-Time Polymerase Chain Reaction , Animals , Benzothiazoles , Cats , Diamines , Quinolines , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...