Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 378: 114834, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38789022

ABSTRACT

The goal of this study is to investigate the role of microbiota-gut-brain axis involved in the protective effect of pair-housing on post-stroke depression (PSD). PSD model was induced by occluding the middle cerebral artery (MCAO) plus restraint stress for four weeks. At three days after MCAO, the mice were restrained 2 h per day. For pair-housing (PH), each mouse was pair housed with a healthy isosexual cohabitor for four weeks. While in the other PH group, their drinking water was replaced with antibiotic water. On day 35 to day 40, anxiety- and depression-like behaviors (sucrose consumption, open field test, forced swim test, and tail-suspension test) were conducted. Results showed pair-housed mice had better performance on anxiety- and depression-like behaviors than the PSD mice, and the richness and diversity of intestinal flora were also improved. However, drinking antibiotic water reversed the effects of pair-housing. Furthermore, pair-housing had an obvious improvement in gut barrier disorder and inflammation caused by PSD. Particularly, they showed significant decreases in CD8 lymphocytes and mRNA levels of pro-inflammatory cytokines (TNF-a, IL-1ß and IL-6), while IL-10 mRNA was upregulated. In addition, pair-housing significantly reduced activated microglia and increased Nissl's body in the hippocampus of PSD mice. However, all these improvements were worse in the pair-housed mice administrated with antibiotic water. We conclude that pair-housing significantly improves PSD in association with enhanced functions of microbiota-gut-brain axis, and homeostasis of gut microbiota is indispensable for the protective effect of pair-housing on PSD.


Subject(s)
Depression , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/physiology , Mice , Depression/etiology , Depression/microbiology , Male , Stroke/complications , Stroke/microbiology , Stroke/psychology , Brain-Gut Axis/physiology , Mice, Inbred C57BL , Housing, Animal , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/psychology
2.
Exp Gerontol ; 190: 112432, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614224

ABSTRACT

The beneficial effect of social interaction in mitigating the incidence of post-stroke depression (PSD) and ameliorating depressive symptoms has been consistently demonstrated through preclinical and clinical studies. However, the underlying relationship with oxytocin requires further investigation. In light of this, the present study aimed to explore the protective effect of pair housing on the development of PSD and the potential relationship with oxytocin receptors. The PSD model was induced by middle cerebral artery occlusion (MCAO) for 50 min, followed by 4-week isolated housing and restrained stress. Subsequently, each mouse in the pair-housing group (PH) was pair-housed with an isosexual healthy partner. Another group was continuously administrated fluoxetine (10 mg/Kg, i.p, once a day) for 3 weeks. To elucidate the potential role of oxytocin, we subjected pair-housed PSD mice to treatment with an oxytocin receptor (OXTR) antagonist (L368,889) (5 mg/Kg, i.p, once a day) for 3 weeks. At 31 to 32 days after MCAO, anxiety- and depressive-like behaviors were assessed using sucrose consumption, forced swim test, and tail-suspension test. The results showed that pair housing significantly improved post-stroke depression to an extent comparable to that of fluoxetine treatment. Furthermore, pair housing significantly decreased corticosterone in serum, increasing OXT mRNA expression in the hypothalamus. Treatment with L368,889 essentially reversed the effect of pair housing, with no discernible sex differences apart from changes in body weight. Pair housing increased hippocampal serotonin (5-HT), but treatment with L368,889 had no significant impact. Additionally, pair housing effectively reduced the number of reactive astrocytes and increased Nissl's body in the cortex and hippocampal CA3 regions. Correspondingly, treatment with L368,889 significantly reversed the changes in the Nissl's body and reactive astrocytes. Moreover, pair housing downregulated mRNA levels of TNF-α, IL-1ß, and IL-6 in the cortex caused by PSD, which was also reversed by treatment with L368,889. In conclusion, pair housing protects against the development of PSD depending on OXT and OXTR in the brain, with no significant divergence based on sex. These findings provide valuable insights into the potential of social interaction and oxytocin as therapeutic targets for PSD. Further research into the underlying mechanisms of these effects may contribute to the development of novel treatments for PSD.


Subject(s)
Camphanes , Depression , Disease Models, Animal , Fluoxetine , Piperazines , Receptors, Oxytocin , Animals , Receptors, Oxytocin/metabolism , Male , Depression/etiology , Depression/metabolism , Mice , Fluoxetine/pharmacology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/psychology , Housing, Animal , Oxytocin/pharmacology , Oxytocin/metabolism , Mice, Inbred C57BL , Stroke/complications , Stroke/psychology , Behavior, Animal/drug effects , Hippocampus/metabolism , Hippocampus/drug effects
3.
Behav Brain Res ; 439: 114246, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36481213

ABSTRACT

Despite the accumulated evidence that pair housing could attenuate post-stroke depression (PSD), but less attention has been paid to the healthy cohabitors, and the underlying mechanisms remain unclear. This study aimed to determine whether there is depressive contagion between PSD mice and their healthy cohabitors. PSD was induced by middle cerebral artery occlusion (MCAO) plus restraint stress for four weeks. Three days after MCAO, the mice were restrained two hours per day and isosexually pair-housed for four weeks. The results showed that, compared with the partners pair housed with normal control mice (Ctrl group), the partners pair housed with PSD mice (CH group) displayed depressive-like behaviors, including decreased sucrose preference rate, significantly shorter duration in the center arena and reduced total distance in the open-field test, and extended immobile time in forced swimming test and tail-suspension test without sex differences. Regarding the change in the body weight, only the males showed a significant reduction on days 17 and 24 after treatment. Furthermore, the CH group showed significantly increased corticosterone and decreased oxytocin (OXT) levels in serum, while the mRNA levels of OXT, vasopressin and oxytocin receptor were remarkably upregulated in the hypothalamus of the CH group. However, there was no significant change in the vasopressin receptor V1a. Interestingly, compared with the Ctrl group, there was a significant decrease in butyrate in serum of the CH group. Consistently, they had mild liver dysfunction with increased alanine transaminase, extended hepatic sinus surrounded by enhanced SLC22A9, and significantly increased Iba1-positive macrophages. Moreover, the expression of tight junction protein (Occludin and ZO-1) obviously decreased in the colon with increasing Iba1-positive cells. These results suggest that isosexual pair-housing with PSD mice causes the healthy partners to develop depressive-like behaviors with disturbances in the gut and liver.


Subject(s)
Depression , Hypothalamus , Mice , Female , Animals , Male , Depression/etiology , Depression/metabolism , Liver , Swimming , Sucrose , Disease Models, Animal
4.
Front Cell Dev Biol ; 8: 374, 2020.
Article in English | MEDLINE | ID: mdl-32528953

ABSTRACT

Autophagy (macroautophagy) is an evolutionarily conserved degradation pathway involved in bulk degradation of cytoplasmic organelles, old protein, and other macromolecules and nutrient recycling during starvation. Extensive studies on functions of autophagy-related genes have revealed that autophagy plays a role in cell differentiation and pathogenesis of pathogenic fungi. In this study, we identified and characterized 14 core autophagy machinery genes (ATGs) in C. neoformans. To understand the function of autophagy in virulence and fungal development in C. neoformans, we knocked out the 14 ATGs in both α and a mating type strain backgrounds in C. neoformans, respectively, by using biolistic transformation and in vivo homologous recombination. Fungal virulence assay showed that virulence of each atgΔ mutants was attenuated in a murine inhalation systemic-infection model, although virulence factor production was not dramatically impaired in vitro. Fungal mating assays showed that all the 14 ATGs are essential for fungal sexual reproduction as basidiospore production was blocked in bilateral mating between each atgΔ mutants. Fungal nuclei development assay showed that nuclei in the bilateral mating of each atgΔ mutants failed to undergo meiosis after fusion, indicating autophagy is essential for regulating meiosis during mating. Overall, our study showed that autophagy is essential for fungal virulence and sexual reproduction in C. neoformans, which likely represents a conserved novel virulence and sexual reproduction control mechanism that involves the autophagy-mediated proteolysis pathway.

5.
Fungal Genet Biol ; 124: 59-72, 2019 03.
Article in English | MEDLINE | ID: mdl-30630094

ABSTRACT

Cryptococcus neoformans is a ubiquitous yeast pathogen that often infects the human central nervous system (CNS) to cause meningitis in immunocompromised individuals. Although numerous signaling pathways and factors important for fungal sexual reproduction and virulence have been investigated, their precise mechanism of action remains to be further elucidated. In this study, we identified and characterized a novel zinc finger protein Zfp1 that regulates fungal sexual reproduction and virulence in C. neoformans. qRT-PCR and ZFP1 promoter regulatory activity assays revealed a ubiquitous expression pattern of ZFP1 in all stages during mating. Subcellular localization analysis indicates that Zfp1 is targeted to the cytoplasm of C. neoformans. In vitro assays of stress responses showed that zfp1Δ mutants and the ZFP1 overexpressed strains ZFP1OE are hypersensitive to SDS, but not Congo red, indicating that Zfp1 may regulate cell membrane integrity. Zfp1 is also essential for fungal sexual reproduction because basidiospore production was blocked in bilateral mating between zfp1Δ mutants or ZFP1 overexpressed strains. Fungal nuclei development assay showed that nuclei in the bilateral mating of zfp1Δ mutants or ZFP1 overexpressed strains failed to undergo meiosis after fusion, indicating Zfp1 is important for regulating meiosis during mating. Although zfp1Δ mutants showed normal growth and produced normal major virulence factors, virulence was attenuated in a murine model. Interestingly, we found that the ZFP1 overexpressed strains were avirulent in a murine systemic-infection model. Overall, our study showed that the zinc finger protein Zfp1 is essential for fungal sporulation and virulence in C. neoformans.


Subject(s)
Cryptococcus neoformans/physiology , Cryptococcus neoformans/pathogenicity , Fungal Proteins/physiology , Zinc Fingers/physiology , Amino Acid Motifs , Animals , Blotting, Western , Cell Membrane/metabolism , Cell Nucleus Division/physiology , Cryptococcosis/microbiology , Cryptococcosis/pathology , Cryptococcus neoformans/genetics , Female , Fungal Capsules/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Expression Profiling , Meiosis/physiology , Mice, Inbred BALB C , Real-Time Polymerase Chain Reaction , Virulence , Zinc/metabolism , Zinc Fingers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...