Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hepatol ; 80(1): 31-40, 2024 01.
Article in English | MEDLINE | ID: mdl-37827470

ABSTRACT

BACKGROUND & AIMS: Immunotherapy for chronic hepatitis B virus (HBV) infection has not yet demonstrated sufficient efficacy. We developed a non-integrative lentiviral-vectored therapeutic vaccine for chronic hepatitis B and tested its antiviral effects in HBV-persistent mice and two inactive HBsAg carriers. METHODS: Lentiviral vectors (LVs) encoding the core, preS1, or large HBsAg (LHBs) proteins of HBV were evaluated for immunogenicity in HBV-naïve mice and therapeutic efficacy in a murine model of chronic HBV infection. In addition, two inactive HBsAg carriers each received two doses of 5×107 transduction units (TU) or 1×108 TU of lentiviral-vectored LHBs (LV-LHBs), respectively. The endpoints were safety, LHBs-specific T-cell responses, and serum HBsAg levels during a 24-week follow-up. RESULTS: In the mouse models, LV-LHBs was the most promising in eliciting robust antigen-specific T cells and in reducing the levels of serum HBsAg and viral load. By the end of the 34-week observation period, six out of ten (60%) HBV-persistent mice vaccinated with LV-LHBs achieved serum HBsAg loss and significant depletion of HBV-positive hepatocytes in the liver. In the two inactive HBsAg carriers, vaccination with LV-LHBs induced a considerable increase in the number of peripheral LHBs-specific T cells in one patient, and a weak but detectable response in the other, accompanied by a sustained reduction of HBsAg (-0.31 log10 IU/ml and -0.46 log10 IU/ml, respectively) from baseline to nadir. CONCLUSIONS: A lentiviral-vectored therapeutic vaccine for chronic HBV infection demonstrated the potential to improve HBV-specific T-cell responses and deplete HBV-positive hepatocytes, leading to a sustained loss or reduction of serum HBsAg. IMPACT AND IMPLICATIONS: Chronic HBV infection is characterized by an extremely low number and profound hypo-responsiveness of HBV-specific T cells. Therapeutic vaccines are designed to improve HBV-specific T-cell responses. We show that immunization with a lentiviral-vectored therapeutic HBV vaccine was able to expand HBV-specific T cells in vivo, leading to reductions of HBV-positive hepatocytes and serum HBsAg.


Subject(s)
Hepatitis B, Chronic , Humans , Mice , Animals , Hepatitis B, Chronic/prevention & control , Hepatitis B, Chronic/drug therapy , Hepatitis B virus , Hepatitis B Surface Antigens , Lentivirus/genetics , Hepatitis B Vaccines/therapeutic use , Vaccination
2.
Infect Immun ; 89(5)2021 04 16.
Article in English | MEDLINE | ID: mdl-33558327

ABSTRACT

Trichinellosis is one of most neglected foodborne zoonoses worldwide. During Trichinella spiralis infection, the intestinal immune response is the first line of defense and plays a vital role in the host's resistance. Previous studies indicate that purinergic P2X7 receptor (P2X7R) and pyrin domain-containing protein 3 (NLRP3) inflammasome are involved in the intestinal immune response in T. spiralis infection. However, the precise role of P2X7R and its effect on NLRP3 remains largely underdetermined. In this study, we aimed to investigate the role of P2X7R in the activation of NLRP3 in macrophages during the intestinal immune response against T. spiralis We found that T. spiralis infection upregulated expression of P2X7R and activation of NLRP3 in macrophages in mice. In vivo, P2X7R deficiency resulted in increased intestinal adult and muscle larval burdens, along with decreased expression of NLRP3/interleukin-1ß (IL-1ß) in macrophages from the infected mice with T. spiralis In In vitro experiments, P2X7R blockade inhibited activation of NLRP3/IL-1ß via NF-κB and thus reduced the capacity of macrophages to kill newborn larvae of T. spiralis These results indicate that P2X7R mediates the elimination of T. spiralis by activating the NF-κB/NLRP3/IL-1ß pathway in macrophages. Our findings contribute to the understanding of the intestinal immune mechanism of T. spiralis infection.


Subject(s)
Interleukin-1beta/metabolism , Macrophages/immunology , Macrophages/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Purinergic P2X7/metabolism , Signal Transduction , Trichinella spiralis , Animals , Disease Models, Animal , Gene Expression , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Parasite Load , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/genetics , Trichinellosis/immunology , Trichinellosis/metabolism , Trichinellosis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...