Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Publication year range
1.
Se Pu ; 38(12): 1363-1368, 2020 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-34213250

ABSTRACT

Brazilein is among the main chemical constituents of Caesalpinia sappan. It has diverse pharmacological activities. Modern pharmacological studies have shown that the compound has antitumor, anti-inflammatory, antibacterial, antioxidant, immunomodulatory, and other pharmacological activities. Brazilein is often used as a stain in various industries. The separation of brazilein by traditional column chromatography will not only result in contamination of the chromatographic column materials, but also lead to loss of the active ingredient. Countercurrent chromatography is an advanced liquid-liquid chromatographic separation technique. It has been widely used for natural product separation and isolation as it offers several advantages, such as low solvent consumption, a highly selective solvent system, and high recoveries. Typical countercurrent chromatography techniques include centrifugal partition chromatography (CPC), high-speed countercurrent chromatography (HSCCC), and high performance countercurrent chromatography (HPCCC). It is well known that choosing a suitable solvent system is vital in countercurrent separation. Therefore, two methods were introduced for choosing a suitable solvent system. One is the generally useful estimation of solvent systems (GUESS) method, which employs thin-layer chromatography (TLC) to identify a suitable solvent system with minimal labor for the rapid purification of target compounds, and another is the Shake-Flash method. The solvent system could be determined by observing the distribution of the sample in the upper and lower phases. Two kinds of solvent systems were screened using the TLC-GUESS and Shake-Flash methods, and tested through the analysis mode of the HPCCC instrument. The results showed that chloroform-methanol-water (4:3:2, v/v/v) was the optimal solvent system for HPCCC separation. A total of 15.2 mg of brazilein and 5.7 mg of caesappanin C were obtained from an ethyl acetate extract with high purities (95.6% and 89.0%, analyzed by HPLC) in one step using the preparation mode of HPCCC, the reversed-phase liquid chromatography mode with the apparatus rotated at 1600 r/min, a flow rate of 10 mL/min, separation temperature of 25℃, and detection wavelength of 285 nm. Their structures were determined by spectroscopic and spectrometric analyses. Brazilein stained the solid packing material in the column and was difficult to elute. The results showed that the use of HPCCC for the separation of brazilein can not only prevent the loss of target active ingredients in Caesalpinia sappan, but also shorten the separation and purification times and improve the operating efficiency. Therefore, HPCCC can be used for the separation and preparation of other pigment compounds in Caesalpinia sappan and other dye plants.


Subject(s)
Benzopyrans , Caesalpinia , Indenes , Plant Extracts/chemistry , Benzopyrans/isolation & purification , Caesalpinia/chemistry , Chromatography, High Pressure Liquid , Countercurrent Distribution , Indenes/isolation & purification
2.
Front Pharmacol ; 9: 320, 2018.
Article in English | MEDLINE | ID: mdl-29681852

ABSTRACT

The treatment of Type 2 Diabetes Mellitus (T2DM) consists primarily of oral antidiabetic drugs (OADs) that stimulate insulin secretion, such as sulfonylureas (SUs) and reduce hepatic glucose production (e.g., biguanides), among others. The marked inter-individual differences among T2DM patients' response to these drugs have become an issue on prescribing and dosing efficiently. In this study, fourteen polymorphisms selected from Genome-wide association studies (GWAS) were screened in 495 T2DM Mexican patients previously treated with OADs to find the relationship between the presence of these polymorphisms and response to the OADs. Then, a novel association screening method, based on global probabilities, was used to globally characterize important relationships between the drug response to OADs and genetic and clinical parameters, including polymorphisms, patient information, and type of treatment. Two polymorphisms, ABCC8-Ala1369Ser and KCNJ11-Glu23Lys, showed a significant impact on response to SUs. Heterozygous ABCC8-Ala1369Ser variant (A/C) carriers exhibited a higher response to SUs compared to homozygous ABCC8-Ala1369Ser variant (A/A) carriers (p-value = 0.029) and to homozygous wild-type genotypes (C/C) (p-value = 0.012). The homozygous KCNJ11-Glu23Lys variant (C/C) and wild-type (T/T) genotypes had a lower response to SUs compared to heterozygous (C/T) carriers (p-value = 0.039). The screening of OADs response related genetic and clinical factors could help improve the prescribing and dosing of OADs for T2DM patients and thus contribute to the design of personalized treatments.

SELECTION OF CITATIONS
SEARCH DETAIL