Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Phytother Res ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526171

ABSTRACT

BACKGROUND AND AIM: Although the anti-cancer activity of isoalantolactone (IATL) has been extensively studied, the anti-melanoma effects of IATL are still unknown. Here, we have investigated the anti-melanoma effects and mechanism of action of IATL. MTT and crystal violet staining assays were performed to detect the inhibitory effect of IATL on melanoma cell viability. Apoptosis and cell cycle arrest induced by IATL were examined using flow cytometry. The molecular mechanism of IATL was explored by Western blotting, confocal microscope analysis, molecular docking, and cellular thermal shift assay (CETSA). A B16F10 allograft mouse model was constructed to determine the anti-melanoma effects of IATL in vivo. The results showed that IATL exerted anti-melanoma effects in vitro and in vivo. IATL induced cytoprotective autophagy in melanoma cells by inhibiting the PI3K/AKT/mTOR signaling. Moreover, IATL inhibited STAT3 activation both in melanoma cells and allograft tumors not only by binding to the SH2 domain of STAT3 but also by suppressing the activity of its upstream kinase Src. These findings demonstrate that IATL exerts anti-melanoma effects via inhibiting the STAT3 and PI3K/AKT/mTOR signaling pathways, and provides a pharmacological basis for developing IATL as a novel phytotherapeutic agent for treating melanoma clinically.

2.
Curr Med Sci ; 43(6): 1201-1205, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37848750

ABSTRACT

OBJECTIVE: Lipopolysaccharide-induced tumor necrosis factor-α factor (LITAF) protein is a newly discovered inflammatory protein. This study aims to study the role of LITAF in the formation of atherosclerosis. METHODS: A total of 10 C57BL/6J mice and 10 C57BL/6J mice with knockout of LITAF gene (C57BL/6J-LITAF-) were divided into two groups: the control group and the LITAF-/- group. The animals were accommodated for 16 weeks and then euthanized with their hearts and aortas isolated thereafter. Next, the roots of the mouse aorta were cryosectioned and stained with Oil Red O staining and immunohistochemical staining (CD68, α-SMA, and Masson), respectively. The area of Oil Red O staining and the proportion of positive expression after immunohistochemical staining were then compared between the control and LITAF-/- groups. At the same time, the blood of mice was collected for the extraction of proteins and RNA. The proteins and RNA were used to detect the expression of major molecules of the NF-κB inflammatory pathway in mice in the control group and the LITAF-/- group by Western blotting and RT-PCR. RESULTS: Oil Red O staining of the aortic root sections of the mice in each group revealed that the area of atherosclerotic plaques in the LITAF-/- group was substantially lower than that in the control group (P<0.05). Moreover, immunohistochemical staining determined that the expression level of α-SMA and CD68 in the LITAF-/- group was significantly lower than that in the control group, whereas the results were reversed following Masson staining (P<0.05). The expression levels of P65 and caspase 3 were significantly lower in the LITAF-/- group than in the control group (P<0.05), whereas the expression level of IκB was higher in the LITAF-/- group. CONCLUSION: LITAF might participate in the formation of atherosclerotic plaque through the NF-κB pathway and play a promoting role in the formation of atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Atherosclerosis/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , RNA , Signal Transduction , Tumor Necrosis Factor-alpha
3.
J Ethnopharmacol ; 312: 116548, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37100264

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular carcinoma (HCC) poses a growing challenge to global health efforts. The 5-year survival rate of HCC patients is still dismal. A traditional prescription Qi-Wei-Wan (QWW) comprising Astragali Radix and Schisandra chinensis Fructus has traditionally been used for HCC treatment according to traditional Chinese medicine theory, but the pharmacological basis is not clear. AIM OF THE STUDY: This study aims to investigate the anti-HCC effects of an ethanolic extract of QWW (hereafter, QWWE) and the mechanism of action. MATERIALS AND METHODS: An UPLC-Q-TOF-MS/MS method was developed to control the quality of QWWE. Two human HCC cell lines (HCCLM3 and HepG2) and a HCCLM3 xenograft mouse model were employed to investigate the anti-HCC effects of QWWE. The anti-proliferative effect of QWWE in vitro was determined by MTT, colony formation and EdU staining assays. Apoptosis and protein levels were examined by flow cytometry and Western blotting, respectively. Nuclear presence of signal transducer and activator of transcription 3 (STAT3) was examined by immunostaining. Transient transfection of pEGFP-LC3 and STAT3C plasmids was performed to assess autophagy and determine the involvement of STAT3 signaling in QWWE's anti-HCC effects, respectively. RESULTS: We found that QWWE inhibited the proliferation of and triggered apoptosis in HCC cells. Mechanistically, QWWE inhibited the activation of SRC and STAT3 at Tyr416 and Tyr705, respectively; inhibited the nuclear translocation of STAT3; lowered Bcl-2 protein levels, while increased Bax protein levels in HCC cells. Over-activating STAT3 attenuated the cytotoxic and apoptotic effects of QWWE in HCC cells. Moreover, QWWE induced autophagy in HCC cells by inhibiting mTOR signaling. Blocking autophagy with autophagy inhibitors (3-methyladenine and chloroquine) enhanced the cytotoxicity, apoptotic effect and the inhibitory effect on STAT3 activation of QWWE. Intragastric administration of QWWE at 10 mg/kg and 20 mg/kg potently repressed tumor growth and inhibited STAT3 and mTOR signaling in tumor tissues, but did not significantly affect mouse body weight. CONCLUSION: QWWE exhibited potent anti-HCC effects. Inhibiting the STAT3 signaling pathway is involved in QWWE-mediated apoptosis, while blocking mTOR signaling contributes to QWWE-mediated autophagy induction. Blockade of autophagy enhanced the anti-HCC effects of QWWE, indicating that the combination of an autophagy inhibitor and QWWE might be a promising therapeutic strategy for HCC management. Our findings provide pharmacological justifications for the traditional use of QWW in treating HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Schisandra , Humans , Animals , Mice , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Cell Line, Tumor , Tandem Mass Spectrometry , Apoptosis , TOR Serine-Threonine Kinases/metabolism , Autophagy , Cell Proliferation
4.
Phytomedicine ; 108: 154526, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334389

ABSTRACT

BACKGROUND: Melanoma is an aggressive cancer. Gracillin has been reported to treat various types of cancer, such as colorectal and lung cancer. However, there is a paucity of research on the anti-melanoma effects of gracillin. PURPOSE: The aim of this study was to assess the anti-melanoma effects and mechanisms of action of gracillin in vitro and in vivo. METHODS: Cell viability was detected using MTT and crystal violet staining assays. Cell proliferation was examined by EdU staining assays. Cell cycle arrest and apoptosis were analyzed by flow cytometry. Autophagic flux was monitored under a confocal microscope. Protein levels were determined by immunoblotting. LY294002 and rapamycin (Rapa) were used to determine the involvement of PI3K/AKT/mTOR signaling in gracillin-mediated autophagy. Signal transducer and activator of transcription 3 (STAT3) was overactivated to explore the contribution of the STAT3 signaling pathway in the anti-melanoma effects of gracillin. A B16F10 allograft mouse model was developed to evaluate the anti-melanoma effects of gracillin in vivo. RESULTS: We demonstrated that in melanoma cells, gracillin inhibited proliferation, induced G0/G1 phase cell cycle arrest, evoked apoptosis, and triggered autophagic cell death. Gracillin induced DNA damage in melanoma cells. Moreover, it suppressed the phosphorylation/activation of PI3K, AKT, mTOR, and 4E-BP1 in melanoma cells. Inhibiting PI3K/AKT and mTOR activity using LY294002 and Rapa, respectively, increased the protein level of LC3B-II in gracillin-treated melanoma cells. Furthermore, gracillin downregulated the protein levels of p-JAK2 (Tyr1007/1008), p-Src (Tyr416), and p-STAT3 (Tyr705) in melanoma cells. Over-expression of STAT3 in A375 cells significantly mitigated the cytotoxic and apoptotic effects of gracillin. In vivo studies showed that gracillin (1 mg/kg or 8 mg/kg, administered intraperitoneally for 16 consecutive days) suppressed B16F10 tumor growth and Src/STAT3 and AKT/mTOR signaling in tumors. No overt toxicity was observed in mice. CONCLUSION: Induction of DNA damage, inhibition of PI3K/AKT/mTOR signaling and suppression of STAT3 signaling are involved in gracillin-mediated cell cycle arrest, autophagic cell death and apoptosis, respectively, in melanoma cells. These findings provide novel insights into the anti-melanoma molecular mechanisms of gracillin, and suggest a potential role of gracillin in melanoma management.


Subject(s)
Melanoma , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis , Autophagy , TOR Serine-Threonine Kinases/metabolism , Melanoma/drug therapy , Cell Proliferation , DNA Damage , Cell Line, Tumor
5.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233191

ABSTRACT

Polyphyllin II (PPII) is a natural steroidal saponin occurring in Rhizoma Paridis. It has been demonstrated to exhibit anti-cancer activity against a variety of cancer cells. However, the anti-colorectal cancer (CRC) effects and mechanism of action of PPII are rarely reported. In the present study, we showed that PPII inhibited the proliferation of HCT116 and SW620 cells. Moreover, PPII induced G2/M-phase cell cycle arrest and apoptosis, as well as protective autophagy, in CRC cells. We found that PPII-induced autophagy was associated with the inhibition of PI3K/AKT/mTOR signaling. Western blotting results further revealed that PPII lowered the protein levels of phospho-Src (Tyr416), phospho-JAK2 (Tyr1007/1008), phospho-STAT3 (Tyr705), and STAT3-targeted molecules in CRC cells. The overactivation of STAT3 attenuated the cytotoxicity of PPII against HCT116 cells, indicating the involvement of STAT3 inhibition in the anti-CRC effects of PPII. PPII (0.5 mg/kg or 1 mg/kg, i.p. once every 3 days) suppressed HCT116 tumor growth in nude mice. In alignment with the in vitro results, PPII inhibited proliferation, induced apoptosis, and lowered the protein levels of phospho-STAT3, phospho-AKT, and phospho-mTOR in xenografts. These data suggest that PPII could be a potent therapeutic agent for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Saponins , Animals , Apoptosis , Autophagy , Colorectal Neoplasms/pathology , Humans , Mice , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Steroids , TOR Serine-Threonine Kinases/metabolism
6.
Food Funct ; 13(6): 3234-3246, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35213678

ABSTRACT

Background: Abnormal proliferation of vascular smooth muscle cells (VSMCs) in the intimal region is a key event in the development of neointimal hyperplasia. 10-G, a bioactive compound found in ginger, exerted inhibitory effects on the proliferation of several cancer cells. However, the effect and mechanism of 10-G on neointimal hyperplasia are not clear. Purpose: To explore the suppressive effects of 10-G on the proliferation and migration of VSMCs, and investigate the underlying mechanisms. Methods: In vivo, a left common carotid artery ligation mouse model was used to observe the effects of neointimal formation through immunohistochemistry and hematoxylin-eosin staining. In vitro, the cell proliferation and migration of HASMCs and A7r5 cells were detected by MTS assay, EdU staining, wound healing assay, Transwell assay, and western blotting as well. Molecular docking, molecular dynamics simulations and surface plasmon resonance imaging were collectively used to evaluate the interaction of 10-G with AMP-activated protein kinase (AMPK). Compound C and si-AMPK were used to inhibit the expression of AMPK. Results: Treatment with 10-G significantly reduced neointimal hyperplasia in the left common carotid artery ligation mouse model. MST and EdU staining showed that 10-G inhibited the proliferation of VSMC cells A7r5 and HASMC. We also found that 10-G altered the expression of proliferation-related proteins, including CyclinD1, CyclinD2, CyclinD3, and CDK4. Molecular docking revealed that the binding energy between AMPK and 10-G is -7.4 kcal mol-1. Molecular simulations suggested that the binding between 10-G and AMPK is stable. Surface plasmon resonance imaging analysis also showed that 10-G has a strong binding affinity to AMPK (KD = 6.81 × 10-8 M). 10-G promoted AMPKα phosphorylation both in vivo and in vitro. Blocking AMPK by an siRNA or AMPK inhibitor pathway partly abolished the anti-proliferation effects of 10-G on VSMCs. Conclusion: These data showed that 10-G might inhibit neointimal hyperplasia and suppress VSMC proliferation by the activation of AMPK as a natural AMPK agonist.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Catechols/pharmacology , Fatty Alcohols/pharmacology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Neointima/pathology , AMP-Activated Protein Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/chemistry , Animals , Catechols/chemistry , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Enzyme Activation , Fatty Alcohols/chemistry , Humans , Hyperplasia , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Docking Simulation , Muscle, Smooth, Vascular/drug effects , Phosphorylation , Protein Conformation , Rats , Signal Transduction , Surface Plasmon Resonance , TOR Serine-Threonine Kinases/metabolism
7.
Phytomedicine ; 95: 153705, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34538671

ABSTRACT

BACKGROUND: Liver cancer is one of the leading causes of cancer-related death worldwide. Dihydrotanshinone I (DHI) was shown to inhibit the growth of several types of cancer. However, research related to hepatoma treatment using DHI is limited. PURPOSE: Here, we explored the inhibitory effect of DHI on the growth of hepatoma cells, and investigated the underlying molecular mechanisms. METHODS: The proliferation of Hep3B, SMCC-7721 and SK-Hep1 hepatoma cells was evaluated using the MTS and Edu staining assay. Hepatoma cell death was analyzed with a LIVE/DEAD Cell Imaging Kit. The relative expression and phosphorylation of proto-oncogene tyrosine-protein kinase Src (Src) and signal transducer and activator of transcription-3 (STAT3) proteins in hepatoma cells, as well as the expression of other protein components, were measured by western blotting. The structural interaction of DHI with Src proteins was evaluated by molecular docking, molecular dynamics simulation, surface plasmon resonance imaging and Src kinase inhibition assay. Src overexpression was achieved by infection with an adenovirus vector encoding human Src. Subsequently, the effects of DHI on tumor growth inhibition were further validated using mouse xenograft models of hepatoma. RESULTS: In vitro studies showed that treatment with DHI inhibited the proliferation and promoted cell death of Hep3B, SMCC-7721 and SK-Hep1 hepatoma cells. We further identified and verified Src as a direct target of DHI by using molecular stimulation, surface plasmon resonance image and Src kinase inhibition assay. Treatment with DHI reduced the in vitro phosphorylation levels of Src and STAT3, a transcription factor regulated by Src. In the xenograft mouse models, DHI dose-dependently suppressed tumor growth and Src and STAT3 phosphorylation. Moreover, Src overexpression partly abrogated the inhibitory effects of DHI on the proliferation and cell death in hepatoma cells. CONCLUSION: Our results suggest that DHI inhibits the growth of hepatoma cells by direct inhibition of Src.


Subject(s)
Carcinoma, Hepatocellular , Furans/pharmacology , Phenanthrenes , Quinones/pharmacology , src-Family Kinases/antagonists & inhibitors , Animals , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation , Mice , Molecular Docking Simulation , Phenanthrenes/pharmacology , Phosphorylation , STAT3 Transcription Factor/metabolism , src-Family Kinases/metabolism
8.
Front Cell Dev Biol ; 9: 652310, 2021.
Article in English | MEDLINE | ID: mdl-34350171

ABSTRACT

Alzheimer's disease (AD) is the most frequent type of dementia. Acteoside (ACT) is a compound isolated from Cistanche tubulosa, which possesses excellent neuroprotective properties. However, the underlying mechanism of ACT in regulating microglia polarization remains ill-defined. Therefore, a computational network model was established to identify the driving targets of ACT and predict its mechanism by integrating multiple available databases. The AlCl3-induced AD model in zebrafish larvae was successfully constituted to demonstrate the therapeutic efficacy of ACT. Subsequently, LPS-induced BV-2 cells uncovered the positive role of ACT in M1/M2 polarization. The NF-κB and AMPK pathways were further confirmed by transcriptomic analysis, metabolomics analysis, molecular biology techniques, and molecular docking. The research provided an infusive mechanism of ACT and revealed the connection between metabolism and microglia polarization from the perspective of mitochondrial function. More importantly, it provided a systematic and comprehensive approach for the discovery of drug targets, including the changes in genes, metabolites, and proteins.

9.
Phytother Res ; 35(7): 3836-3847, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33792976

ABSTRACT

Melanoma is the most common type of skin cancer. Signal transducer and activator of transcription 3 (STAT3) signaling has been demonstrated to be a therapeutic target for melanoma. Dauricine (Dau), an alkaloid compound isolated from the root of Menispermum dauricum DC., has shown tumor-suppressing effects in multiple human cancers, but its potential in melanoma remains unexplored. In this study, we demonstrated that Dau significantly inhibited the viability and proliferation of A375 and A2058 melanoma cells. Death of melanoma cells was also markedly promoted by Dau. Moreover, Dau inhibited phosphorylation-mediated activation of STAT3 and Src in a dose-dependent manner. Notably, constitutive activation of Src partially abolished the antiproliferative and cytotoxic activities of Dau on melanoma cells. Molecular docking showed that Dau could dock on the kinase domain of Src with a binding energy of -10.42 kcal/mol. Molecular dynamics simulations showed that Src-Dau binding was stable. Surface plasmon resonance imaging analysis also showed that Dau has a strong binding affinity to Src. In addition, Dau suppressed the growth of melanoma cells and downregulated the activation of Src/STAT3 in a xenograft model in vivo. These data demonstrated that Dau inhibits proliferation and promotes cell death in melanoma cells by inhibiting the Src/STAT3 pathways.


Subject(s)
Benzylisoquinolines/pharmacology , Melanoma , Proto-Oncogene Proteins pp60(c-src) , STAT3 Transcription Factor , Tetrahydroisoquinolines/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Melanoma/drug therapy , Molecular Docking Simulation , Phosphorylation , Proto-Oncogene Proteins pp60(c-src)/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
10.
Anal Bioanal Chem ; 412(26): 7187-7194, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32767015

ABSTRACT

Calcium ion (Ca2+) is an indispensable second messenger in living organisms. The impaired Ca2+ handling can induce many diseases. In this paper, we developed a simple and effective method to encapsulate a coumarin-based Ca2+ probe ((E)-2-hydroxy-N'-((7-hydroxy-2-oxo-2H-chromen-8-yl)methylene)-2-phenylacetohydrazide, CPM) into nanoparticles (NPs), and CPM NPs with blue fluorescence were obtained, whose maximum excitation and maximum emission wavelengths were characterized at 365 nm and 450 nm, respectively. The CPM NPs show significant fluorescence enhancement toward Ca2+ over other metal ions, with a limit of determination (LOD) of 0.04 µM. To optimize the optical property of the NPs, CPM and curcumin, which were introduced as the Förster resonance energy transfer (FRET) donor and acceptor, respectively, were co-encapsulated, and bright green CPM@Cur NPs with large stokes shift and narrow emission band width were constructed. Due to their low cytotoxicity and excellent stability, CPM NPs and CPM@Cur NPs were further successfully used to discriminate the primary aortic smooth muscle cells isolated from mice with abnormal Ca2+ homeostasis from their littermate controls. It is worth noting that CPM@Cur NPs exhibit stronger fluorescence signal and diminished background interference, which make them have great potential in the Ca2+ monitoring during biological processes. This strategy opens a new way to synthesize NPs with high brightness and has a potential application prospect in composite sensing and intracellular imaging. CPM@Cur NPs are developed and applied in biological sensing and intracellular Ca2+ imaging, as well as discriminating the cells with abnormal calcium homeostasis.


Subject(s)
Calcium/metabolism , Fluorescent Dyes/chemistry , Animals , Fluorescence Resonance Energy Transfer , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nanoparticles/chemistry
11.
Huan Jing Ke Xue ; 41(7): 2995-3003, 2020 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-32608871

ABSTRACT

Fine particulate matter (PM2.5) is an important component of air pollution, and thus it is meaningful to analyze its influencing factors. According to existing literature, most studies to date have focused on the relationship between PM2.5 and meteorological or economic factors, whereas fewer have analyzed the relationship between PM2.5 and land use and land cover change (LUCC). This study employed spatial distribution data of PM2.5 and land use and land cover data to analyze the relationship between dynamic characteristics of PM2.5 and LUCC. A geographically weighted regression (GWR) model and spatial analysis tools based on ArcGIS were used to analyze the relationship between PM2.5 dynamic characteristics and LUCC. North China was selected as the study area, and the results showed that ① The spatial pattern of PM2.5 in North China was high in the southeast and low in the northwest for 18 years. From a time perspective, the PM2.5 reached its maximum value in 2006 and has maintained a high value since then. The PM2.5 exceeded the permissible standard in most of the cities, with serious environmental pollution generally. ② The main land use and land cover types in North China from 2000 to 2015 were cropland, woodland, and grassland, and the land use and land cover change showed a trend of great decline in cropland and a great increase in construction land. ③ The results of the GWR model showed that local R2 is low in non-LUCC areas and high in LUCC areas, and the PM2.5 dynamic characteristics have a significant response to LUCC. ④ For different land use and land cover types, the distribution of PM2.5 showed a trend of construction land > cropland > water area > grassland > woodland > unused land, for different types of LUCC. PM2.5 concentration increased when natural land changed to artificial land and decreased when artificial land changed to natural land.

12.
ACS Biomater Sci Eng ; 6(3): 1727-1734, 2020 03 09.
Article in English | MEDLINE | ID: mdl-33455364

ABSTRACT

Mitochondria are critical organelles in eukaryotes that efficiently generate adenosine 5'-triphosphate (ATP) for various biological activities, and any defect in the process of ATP synthesis may lead to mitochondrial dysfunction and directly link to a variety of medical disorders. Monitoring the ATP variations in cells is key for innovative early diagnosis of mitochondrial diseases. Herein, multifunctional single-layered graphene quantum dots (s-GQDs) with bright green emission were constructed, which exhibit strong binding affinity for ATP and good mitochondria targeting ability. Using the proposed s-GQDs, we successfully discriminated the primary smooth muscle cells isolated from the transgenic mouse (heterozygote sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) 2 C674S knock-in mouse) with mitochondrial disorders or their littermate controls, indicating s-GQDs as promising probes for the study of cell metabolism and mitochondrial malfunction-related diseases, and targeting endoplasmic reticulum stress is an effective way to modulate metabolic pathways relevant to SERCA 2 inactivity mitochondrial dysfunction.


Subject(s)
Graphite , Mitochondrial Diseases , Quantum Dots , Animals , Calcium/metabolism , Mice , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
13.
J Org Chem ; 84(12): 7829-7839, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31117561

ABSTRACT

A catalytic asymmetric conjugate addition of indoles to o-hydroxyphenyl substituted p-quinone methides has been established in the presence of chiral phosphoric acid, which afforded chiral indole-containing triarylmethanes in generally high yields (54-98%) and good enantioselectivities (90:10-96:4 enantiomeric ratio). The control experiments indicated that o-hydroxyphenyl substituted p-quinone methides had a high possibility to transform into o-quinone methides in the presence of chiral phosphoric acid, and the formation of o-quinone methides might be a necessity for the reaction. This reaction will not only contribute to the research field of catalytic asymmetric transformations of p-quinone methides and o-quinone methides but also provide a useful method for the construction of enantioenriched triarylmethane frameworks.

14.
RSC Adv ; 9(37): 21134-21138, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-35521328

ABSTRACT

The molecular mechanism of cancer cell death caused by silver nanoparticles (AgNPs) of different sizes is investigated. Compared with the larger nanoparticles, 13 nm AgNPs significantly inhibit the migration and invasiveness of lung adenocarcinoma A549 cells, induce elevated reactive oxygen species and lead to NF-κB directed cellular apoptosis.

15.
Org Biomol Chem ; 16(37): 8395-8402, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30209506

ABSTRACT

The first [4 + 2] cyclization/retro-Mannich reaction cascade of para-quinone methides with Pd-containing 1,4-dipoles generated in situ from vinyl benzoxazinanones has been established. The corresponding rearrangement products were obtained in generally good to excellent yields (up to 92% yield). This reaction represents the first example of C[double bond, length as m-dash]C double bond cleavage of para-quinone methides, which will greatly enrich the chemistry of quinone methides.

16.
Ying Yong Sheng Tai Xue Bao ; 28(11): 3544-3552, 2017 Nov.
Article in Chinese | MEDLINE | ID: mdl-29692097

ABSTRACT

Water scarcity is a critical factor influencing rain-fed agricultural production on the Loess Plateau, and the exploitation of rainwater is an effective avenue to alleviate water scarcity in this area. This study was conducted to investigate the spatial and temporal distribution of soil moisture in the 0-300 cm under a 21-year-old apple orchard with the rainwater collection and infiltration (RWCI) system by using a time domain reflectometer (TDR) probe on the Loess Plateau. The results showed that there was a low soil moisture zone in the 40-80 cm under the CK, and the RWCI system significantly increased soil moisture in this depth interval. Over this depth, the annual average soil moisture under RWCI40, RWCI60 and RWCI80 was 39.2%, 47.2% and 29.1% higher than that of bare slope (BS) and 75.3%, 85.4% and 62.7% higher than that of CK, respectively. The maximum infiltration depth of water under RWCI40, RWCI60 and RWCI80 was 80 cm, 120 cm and 180 cm, respectively, and the soil moisture in the 0-60, 0-100 and 0-120 cm was more affected by RWCI40, RWCI60 and RWCI80, respectively. Over the whole growth period of apple tree, the maximum value of soil moisture content in the 0-300 cm existed in the RWCI80 treatment, followed by the RWCI40 and RWCI60 treatments. Overall, the RWCI system is an effective meaning of transforming rainwater to available water resources and realizing efficient use of agricultural water on the Loess Plateau.


Subject(s)
Malus , Soil , Agriculture , China , Rain , Water
17.
J Org Chem ; 81(1): 185-92, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26652222

ABSTRACT

The first application of 3-methyl-2-vinylindoles in catalytic asymmetric Povarov reactions has been established via the three-component reactions of 3-methyl-2-vinylindoles, aldehydes, and anilines in the presence of chiral phosphoric acid, providing easy access to chiral indole-derived tetrahydroquinolines with three contiguous stereogenic centers at high yields (up to 99%) and with excellent diastereo- and enantioselectivities (all >95:5 dr, up to 96% ee). This mode of catalytic asymmetric three-component reaction offers a step-economic and atom-economic strategy for accessing enantioenriched indole-derived tetrahydroquinolines with structural diversity and complexity.

18.
Respiration ; 90(1): 25-32, 2015.
Article in English | MEDLINE | ID: mdl-25925832

ABSTRACT

BACKGROUND: Pneumococcal carriage in the nasopharynx is a primary means of transmission and a necessary prerequisite for pneumococcal disease. OBJECTIVES: We analyzed the relationship between expressions of Foxp3+ regulatory T (Treg) cells and Th17 cells, and pneumococcal carriage in the adenoids of children who were either positive or negative for pneumococci. METHODS: We collected adenoidal tissue and nasopharyngeal swab samples from children undergoing an adenoidectomy. Adenoidal mononuclear cells were isolated, cultured and then stimulated with culture concentrated supernatant (CCS) obtained from a D39 bacterial strain. RESULTS: Foxp3+ Treg cells were upregulated and Th17 cells were downregulated in populations of adenoidal mononuclear cells obtained from the pneumococcus-positive group. Following CCS stimulation, the increment in Foxp3+ Treg cells in the pneumococcus-positive group was significantly greater than that in the pneumococcus-negative group, while the increment in Th17 cells was less as compared to that in the pneumococcus-negative group. These results were consistent with variations in levels of Foxp3 mRNA and retinoic acid receptor-related orphan receptor-γt mRNA in adenoidal mononuclear cells. Levels of IL-17A and IL-6 in adenoid tissue were higher in the pneumococcus-negative group, and the levels of TGF-ß in adenoid tissue were lower in the pneumococcus-negative group compared to the pneumococcus-positive group. Pneumococcal carriage in children was closely associated with the expressions of Foxp3+ Treg and Th17 cells in the adenoid. CONCLUSION: Upregulation of Foxp3+ Treg cells might downregulate the production of Th17 cells in the adenoid, resulting in decreased scavenging of Streptococcus pneumoniae and chronic pneumococcal carriage.


Subject(s)
Adenoids/microbiology , Pneumococcal Infections/microbiology , RNA, Messenger/metabolism , Streptococcus pneumoniae/isolation & purification , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Adenoids/immunology , Carrier State , Child , Child, Preschool , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Humans , Interleukin-17/immunology , Interleukin-6/immunology , Male , Nasopharynx/immunology , Nasopharynx/microbiology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/immunology
19.
J Org Chem ; 80(11): 5737-44, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25939045

ABSTRACT

The first catalytic enantioselective construction of a 3,3'-pyrrolidinyldispirooxindole scaffold has been established via organocatalytic asymmetric 1,3-dipolar cycloadditions of isatin-derived azomethine ylides with methyleneindolinones, which afforded structurally complex bis-spirooxindoles containing three contiguous and two quaternary stereogenic centers in generally high yields (up to 99%) and excellent diastereo- and enantioselectivities (up to >95:5 dr, 98% ee). This reaction also provides a good example for the application of catalytic asymmetric 1,3-dipolar cycloadditions in constructing enantioenriched bis-spirooxindole frameworks with structural complexity and rigidity.


Subject(s)
Indoles/chemical synthesis , Isatin/chemistry , Pyrrolidines/chemical synthesis , Spiro Compounds/chemistry , Catalysis , Cycloaddition Reaction , Indoles/chemistry , Molecular Structure , Oxindoles , Pyrrolidines/chemistry , Stereoisomerism
20.
Zhongguo Zhong Yao Za Zhi ; 39(16): 3054-9, 2014 Aug.
Article in Chinese | MEDLINE | ID: mdl-25509286

ABSTRACT

The paper aimed to evaluate the effects of lead stress on photosynthetic performance and ginsenoside content in ginseng (Panax ginseng). To accomplish this, three years old ginseng were cultivated in pot and in phytotron with different concentrations of lead, ranging from 0 to 1000 mg x kg(-1) soil for a whole growth period (about 150 days). The photosynthetic parameters in leaves and ginsenoside content in roots of ginseng were determined in green fruit stage and before withering stage, respectively. In comparison with the control, net photosynthetic rate and SPAD value in ginseng leaves cultivated with 100 and 250 mg x kg(-1) of lead changed insignificantly, however, ginseng supplied with 500 and 1 000 mg x kg(-1) of lead showed a noticeably decline in the net rate of photosynthesis and SPAD value (P < 0.05), the lowest net photosynthetic rate and SPAD value showed in the treatment supplied with 1 000 mg x kg(-1) of lead, with decline of 57.8%,11.0%, respectively. Total content of ginsenoside in ginseng roots cultivated with 100 mg x kg(-1) of lead showed insignificantly change compared to the control, but the content increased remarkably in treatments supplied with 250, 500, 1 000 mg x kg(-1) of lead (P < 0.05), and highest content appeared in these ginsengs exposed to 1000 mg x kg(-1) of lead. The net photosynthetic rate and SPAD value in leaves of ginseng both showed significantly negative linear correlations with lead stress level (P < 0.01), and significant positive linear correlations between total content of ginsenoside and lead concentration was also observed (P < 0.05). These results strongly indicate that exposing to high level of lead negatively affects photosynthetic performance in ginseng leaves, but benefits for accumulation of secondary metabolism (total content of ginsenoside) in ginseng root.


Subject(s)
Ginsenosides/metabolism , Lead/pharmacology , Panax/drug effects , Panax/metabolism , Photosynthesis/drug effects , Ginsenosides/analysis , Panax/chemistry , Panax/growth & development , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...