Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 508
Filter
1.
Microb Ecol ; 87(1): 68, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722447

ABSTRACT

It is necessary to predict the critical transition of lake ecosystems due to their abrupt, non-linear effects on social-economic systems. Given the promising application of paleolimnological archives to tracking the historical changes of lake ecosystems, it is speculated that they can also record the lake's critical transition. We studied Lake Dali-Nor in the arid region of Inner Mongolia because of the profound shrinking the lake experienced between the 1300 s and the 1600 s. We reconstructed the succession of bacterial communities from a 140-cm-long sediment core at 4-cm intervals and detected the critical transition. Our results showed that the historical trajectory of bacterial communities from the 1200 s to the 2010s was divided into two alternative states: state1 from 1200 to 1300 s and state2 from 1400 to 2010s. Furthermore, in the late 1300 s, the appearance of a tipping point and critical slowing down implied the existence of a critical transition. By using a multi-decadal time series from the sedimentary core, with general Lotka-Volterra model simulations, local stability analysis found that bacterial communities were the most unstable as they approached the critical transition, suggesting that the collapse of stability triggers the community shift from an equilibrium state to another state. Furthermore, the most unstable community harbored the strongest antagonistic and mutualistic interactions, which may imply the detrimental role of interaction strength on community stability. Collectively, our study showed that sediment DNA can be used to detect the critical transition of lake ecosystems.


Subject(s)
Bacteria , DNA, Bacterial , Geologic Sediments , Lakes , Lakes/microbiology , Lakes/chemistry , Geologic Sediments/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , China , DNA, Bacterial/genetics , Ecosystem , RNA, Ribosomal, 16S/genetics , Microbiota
2.
BMC Plant Biol ; 24(1): 372, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714917

ABSTRACT

BACKGROUND: High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS: Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION: These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.


Subject(s)
Arabidopsis , Manihot , Plant Proteins , Plants, Genetically Modified , Potassium , Salt Stress , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Manihot/genetics , Manihot/metabolism , Manihot/physiology , Plants, Genetically Modified/genetics , Potassium/metabolism , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant , Salt Tolerance/genetics , Sodium/metabolism
3.
Nat Commun ; 15(1): 4047, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744873

ABSTRACT

Human hippocampal organoids (hHOs) derived from human induced pluripotent stem cells (hiPSCs) have emerged as promising models for investigating neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. However, obtaining the electrical information of these free-floating organoids in a noninvasive manner remains a challenge using commercial multi-electrode arrays (MEAs). The three-dimensional (3D) MEAs developed recently acquired only a few neural signals due to limited channel numbers. Here, we report a hippocampal cyborg organoid (cyb-organoid) platform coupling a liquid metal-polymer conductor (MPC)-based mesh neuro-interface with hHOs. The mesh MPC (mMPC) integrates 128-channel multielectrode arrays distributed on a small surface area (~2*2 mm). Stretchability (up to 500%) and flexibility of the mMPC enable its attachment to hHOs. Furthermore, we show that under Wnt3a and SHH activator induction, hHOs produce HOPX+ and PAX6+ progenitors and ZBTB20+PROX1+ dentate gyrus (DG) granule neurons. The transcriptomic signatures of hHOs reveal high similarity to the developing human hippocampus. We successfully detect neural activities from hHOs via the mMPC from this cyb-organoid. Compared with traditional planar devices, our non-invasive coupling offers an adaptor for recording neural signals from 3D models.


Subject(s)
Hippocampus , Induced Pluripotent Stem Cells , Organoids , Humans , Organoids/metabolism , Organoids/cytology , Hippocampus/cytology , Hippocampus/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Neurons/cytology , Metals/chemistry , Transcriptome , Dentate Gyrus/cytology , Dentate Gyrus/metabolism
4.
Adv Mater ; : e2314310, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655719

ABSTRACT

The precise delivery of anti-seizure medications (ASM) to epileptic loci remains the major challenge to treat epilepsy without causing adverse drug reactions. The unprovoked nature of epileptic seizures raises the additional need to release ASMs in a spatiotemporal controlled manner. Targeting the oxidative stress in epileptic lesions, here the reactive oxygen species (ROS) induced in situ supramolecular assemblies that synergized bioorthogonal reactions to deliver inhibitory neurotransmitter (GABA) on-demand, are developed. Tetrazine-bearing assembly precursors undergo oxidation and selectively self-assemble under pathological conditions inside primary neurons and mice brains. Assemblies induce local accumulation of tetrazine in the hippocampus CA3 region, which allows the subsequent bioorthogonal release of inhibitory neurotransmitters. For induced acute seizures, the sustained release of GABA extends the suppression than the direct supply of GABA. In the model of permanent damage of CA3, bioorthogonal ligation on assemblies provides a reservoir of GABA that behaves prompt release upon 365 nm irradiation. Incorporated with the state-of-the-art microelectrode arrays, it is elucidated that the bioorthogonal release of GABA shifts the neuron spike waveforms to suppress seizures at the single-neuron precision. The strategy of in situ supramolecular assemblies-directed bioorthogonal prodrug activation shall be promising for the effective delivery of ASMs to treat epilepsy.

5.
Plants (Basel) ; 13(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38592853

ABSTRACT

HAK/KUP/KT family members have been identified as playing key roles in K+ uptake and salt tolerance in numerous higher plants. However, their functions in cassava (Manihot esculenta Cantz) remain unknown. In this study, a gene encoding for a high-affinity potassium transporter (MeHAK5) was isolated from cassava and its function was investigated. Subcellular localization analysis showed that MeHAK5 is a plasma membrane-localized transporter. RT-PCR and RT-qPCR indicated that MeHAK5 is predominantly expressed in cassava roots, where it is upregulated by low potassium or high salt; in particular, its highest expression levels separately increased by 2.2 and 2.9 times after 50 µM KCl and 150 mM NaCl treatments. When heterologously expressed in yeast, MeHAK5 mediated K+ uptake within the cells of the yeast strain CY162 and rescued the salt-sensitive phenotype of AXT3K yeast. MeHAK5 overexpression in transgenic Arabidopsis plants exhibited improved growth and increased shoot K+ content under low potassium conditions. Under salt stress, MeHAK5 transgenic Arabidopsis plants accumulated more K+ in the shoots and roots and had reduced Na+ content in the shoots. As a result, MeHAK5 transgenic Arabidopsis demonstrated a more salt-tolerant phenotype. These results suggest that MeHAK5 functions as a high-affinity K+ transporter under K+ starvation conditions, improving K+/Na+ homeostasis and thereby functioning as a positive regulator of salt stress tolerance in transgenic Arabidopsis. Therefore, MeHAK5 may be a suitable candidate gene for improving K+ utilization efficiency and salt tolerance.

6.
Sci Rep ; 14(1): 8743, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627506

ABSTRACT

The IVa subfamily of glycine-rich proteins (GRPs) comprises a group of glycine-rich RNA binding proteins referred to as GR-RBPa here. Previous studies have demonstrated functions of GR-RBPa proteins in regulating stress response in plants. However, the mechanisms responsible for the differential regulatory functions of GR-RBPa proteins in different plant species have not been fully elucidated. In this study, we identified and comprehensively studied a total of 34 GR-RBPa proteins from five plant species. Our analysis revealed that GR-RBPa proteins were further classified into two branches, with proteins in branch I being relatively more conserved than those in branch II. When subjected to identical stresses, these genes exhibited intensive and differential expression regulation in different plant species, corresponding to the enrichment of cis-acting regulatory elements involving in environmental and internal signaling in these genes. Unexpectedly, all GR-RBPa genes in branch I underwent intensive alternative splicing (AS) regulation, while almost all genes in branch II were only constitutively spliced, despite having more introns. This study highlights the complex and divergent regulations of a group of conserved RNA binding proteins in different plants when exposed to identical stress conditions. These species-specific regulations may have implications for stress responses and adaptations in different plant species.


Subject(s)
Plants , Regulatory Sequences, Nucleic Acid , Plants/genetics , Plants/metabolism , Stress, Physiological/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Glycine/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny
7.
Heliyon ; 10(8): e29840, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681577

ABSTRACT

The introduction of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of lung cancer. Given the limited clinical benefits of immunotherapy in patients with non-small cell lung cancer (NSCLC), various predictors have been shown to significantly influence prognosis. However, no single predictor is adequate to forecast patients' survival benefit. Therefore, it's imperative to develop a prognostic model that integrates multiple predictors. This model would be instrumental in identifying patients who might benefit from ICIs. Retrospective analysis and small case series have demonstrated the potential role of these models in prognostic prediction, though further prospective investigation is required to evaluate more rigorously their application in these contexts. This article presents and summarizes the latest research advancements on immunotherapy prognostic models for NSCLC from multiple omics perspectives and discuss emerging strategies being developed to enhance the domain.

8.
Plant Sci ; 342: 112056, 2024 May.
Article in English | MEDLINE | ID: mdl-38438082

ABSTRACT

Most of mRNAs in Eukaryote were matured after the removal of introns in their pre-mRNA transcripts. Serine/arginine-rich (SR) proteins are a group of splicing regulators regulating the splicing processes globally. Expressions of SR proteins themselves were extensively regulated, at both transcription and splicing levels, under different environmental conditions, specially heat stress conditions. The pine genome is characterized by super-long and easily methylated introns in a large number of genes that derived from the extensive accumulation of transposons (TEs). Here, we identified and analyzed the phylogenetic characteristics of 24 SR proteins and their encoding genes from the pine genome. Then we explored transcription and pre-mRNA splicing expression patterns of SR genes in P. massoniana seedlings under normal and heat stress temperature conditions. Our results showed that the transcription patterns of SR genes in pine exhibited significant changes compared to other plant species, and these changes were not strictly correlated with the intron length and DNA methylation intensity of the SR genes. Interestingly, none of the long introns of SR genes underwent alternative splicing (AS) in our experiment. Furthermore, the intensity of AS regulation may be related to the potential DNA methylation intensity of SR genes. Taken together, this study explores for the first time the characteristics of significant variations in the transcription and splicing patterns of SR proteins in a plant species with an over-accumulation of super-long introns.


Subject(s)
Arabidopsis , RNA Precursors , Introns/genetics , RNA Precursors/genetics , Phylogeny , Arabidopsis/genetics , RNA Splicing , Alternative Splicing/genetics
9.
iScience ; 27(3): 109245, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439973

ABSTRACT

The main causes of death in patients with ovarian cancer (OC) are invasive lesions and the spread of metastasis. The present study aimed to explore the mechanisms that might promote OC metastasis. Here, we identified that VGLL1 expression was remarkably increased in metastatic OC samples. The role of VGLL1 in OC metastasis and tumor growth was examined by cell function assays and mouse models. Mechanistically level, METTL3-mediated N6-methyladenosine (m6A) modification contributed to VGLL1 upregulation in an IGF2BP2 recognition-dependent manner. Furthermore, VGLL1 directly interacts with TEAD4 and co-transcriptionally activates HMGA1. HMGA1 further activates Wnt/ß-catenin signaling to enhance OC metastasis by promoting the epithelial-mesenchyme transition traits. Rescue assays indicated that the upregulation of HMGA1 was essential for VGLL1-induced metastasis. Collectively, these findings showed that the m6A-induced VGLL1/HMGA1/ß-catenin axis might play a vital role in OC metastasis and tumor growth. VGLL1 might serve as a prognostic marker and therapeutic target against the metastasis of OC.

10.
Chem Rev ; 124(5): 2081-2137, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38393351

ABSTRACT

Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.


Subject(s)
Polymers , Wearable Electronic Devices , Humans
11.
iScience ; 27(2): 108851, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318387

ABSTRACT

The efficacy of COVID-19 vaccination relies on the induction of neutralizing antibodies, which can vary among vaccine recipients. In this study, we investigated the potential factors affecting the neutralizing antibody response by combining plasma and urine proteomics and gut microbiota analysis. We found that activation of the LXR/FXR pathway in plasma was associated with the production of ACE2-RBD-inhibiting antibodies, while urine proteins related to complement system, acute phase response signaling, LXR/FXR, and STAT3 pathways were correlated with neutralizing antibody production. Moreover, we observed a correlation between the gut microbiota and plasma and urine proteins, as well as the vaccination response. Based on the above data, we built a predictive model for vaccination response (AUC = 0.85). Our study provides insights into characteristic plasma and urine proteins and gut microbiota associated with the ACE2-RBD-inhibiting antibodies, which could benefit our understanding of the host response to COVID-19 vaccination.

12.
Adv Mater ; : e2314132, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353332

ABSTRACT

Radiation therapy (RT) is one of the primary options for clinical cancer therapy, in particular advanced head and neck squamous cell carcinoma (HNSCC). Herein, the crucial role of bromodomain-containing protein 4 (BRD4)-RAD51 associated protein 1 (RAD51AP1) axis in sensitizing RT of HNSCC is revealed. A versatile nanosensitizer (RPB7H) is thus innovatively engineered by integrating a PROteolysis TArgeting Chimeras (PROTAC) prodrug (BPA771) and hafnium dioxide (HfO2 ) nanoparticles to downregulate BRD4-RAD51AP1 pathway and sensitize HNSCC tumor to RT. Upon intravenous administration, the RPB7H nanoparticles selectively accumulate at the tumor tissue and internalize into tumor cells by recognizing neuropilin-1 overexpressed in the tumor mass. HfO2 nanoparticles enhance RT effectiveness by amplifying X-ray deposition, intensifying DNA damage, and boosting oxidative stress. Meanwhile, BPA771 can be activated by RT-induced H2 O2 secretion to degrade BRD4 and inactivate RAD51AP1, thus impeding RT-induced DNA damage repair. This versatile nanosensitizer, combined with X-ray irradiation, effectively regresses HNSCC tumor growth in a mouse model. The findings introduce a PROTAC prodrug-based radiosensitization strategy by targeting the BRD4-RAD51AP1 axis, may offer a promising avenue to augment RT and more effective HNSCC therapy.

13.
Plant Cell Environ ; 47(5): 1486-1502, 2024 May.
Article in English | MEDLINE | ID: mdl-38238896

ABSTRACT

For plant growth under salt stress, sensing and transducing salt signals are central to cellular Na+ homoeostasis. The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) complexes play critical roles in transducing salt signals in plants. Here, we show that CBL5, an ortholog of CBL4 and CBL10 in Arabidopsis, interacts with and recruits CIPK8/CIPK24 to the plasma membrane. Yeast cells coexpressing CBL5, CIPK8/CIPK24 and SOS1 demonstrated lesser Na+ accumulation and a better growth phenotype than the untransformed or SOS1 transgenic yeast cells under salinity. Overexpression of CBL5 improved the growth of the cipk8 or cipk24 single mutant but not the cipk8 cipk24 double mutant under salt stress, suggesting that CIPK8 and CIPK24 were the downstream targets of CBL5. Interestingly, seed germination in cbl5 was severely inhibited by NaCl, which was recovered by the overexpression of CBL5. Furthermore, CBL5 was mainly expressed in the cotyledons and hypocotyls, which are essential to seed germination. Na+ efflux activity in the hypocotyls of cbl5 was reduced relative to the wild-type under salt stress, enhancing Na+ accumulation. These findings indicate that CBL5 functions in seed germination and protects seeds and germinating seedlings from salt stress through the CBL5-CIPK8/CIPK24-SOS1 pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Germination , Calcineurin/genetics , Calcineurin/metabolism , Saccharomyces cerevisiae/metabolism , Seeds , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Protein Kinases/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Calcium-Binding Proteins/metabolism
14.
ACS Nano ; 18(2): 1702-1713, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38165231

ABSTRACT

Implantable neuroelectronic interfaces have gained significant importance in long-term brain-computer interfacing and neuroscience therapy. However, due to the mechanical and geometrical mismatches between the electrode-nerve interfaces, personalized and compatible neural interfaces remain serious issues for peripheral neuromodulation. This study introduces the stretchable and flexible electronics class as a self-rolled neural interface for neurological diagnosis and modulation. These stretchable electronics are made from liquid metal-polymer conductors with a high resolution of 30 µm using microfluidic printing technology. They exhibit high conformability and stretchability (over 600% strain) during body movements and have good biocompatibility during long-term implantation (over 8 weeks). These stretchable electronics offer real-time monitoring of epileptiform activities with excellent conformability to soft brain tissue. The study also develops self-rolled microfluidic electrodes that tightly wind the deforming nerves with minimal constraint (160 µm in diameter). The in vivo signal recording of the vagus and sciatic nerve demonstrates the potential of self-rolled cuff electrodes for sciatic and vagus neural modulation by recording action potential and reducing heart rate. The findings of this study suggest that the robust, easy-to-use self-rolled microfluidic electrodes may provide useful tools for compatible neuroelectronics and neural modulation.


Subject(s)
Microfluidics , Sciatic Nerve , Electrodes , Electronics , Brain
15.
BMC Plant Biol ; 24(1): 4, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163897

ABSTRACT

BACKGROUND: Understanding how plants and pathogens regulate each other's gene expression during their interactions is key to revealing the mechanisms of disease resistance and controlling the development of pathogens. Despite extensive studies on the molecular and genetic basis of plant immunity against pathogens, the influence of pitaya immunity on N. dimidiatum metabolism to restrict pathogen growth is poorly understood, and how N. dimidiatum breaks through pitaya defenses. In this study, we used the RNA-seq method to assess the expression profiles of pitaya and N. dimidiatum at 4 time periods after interactions to capture the early effects of N. dimidiatum on pitaya processes. RESULTS: The study defined the establishment of an effective method for analyzing transcriptome interactions between pitaya and N. dimidiatum and to obtain global expression profiles. We identified gene expression clusters in both the host pitaya and the pathogen N. dimidiatum. The analysis showed that numerous differentially expressed genes (DEGs) involved in the recognition and defense of pitaya against N. dimidiatum, as well as N. dimidiatum's evasion of recognition and inhibition of pitaya. The major functional groups identified by GO and KEGG enrichment were responsible for plant and pathogen recognition, phytohormone signaling (such as salicylic acid, abscisic acid). Furthermore, the gene expression of 13 candidate genes involved in phytopathogen recognition, phytohormone receptors, and the plant resistance gene (PG), as well as 7 effector genes of N. dimidiatum, including glycoside hydrolases, pectinase, and putative genes, were validated by qPCR. By focusing on gene expression changes during interactions between pitaya and N. dimidiatum, we were able to observe the infection of N. dimidiatum and its effects on the expression of various defense components and host immune receptors. CONCLUSION: Our data show that various regulators of the immune response are modified during interactions between pitaya and N. dimidiatum. Furthermore, the activation and repression of these genes are temporally coordinated. These findings provide a framework for better understanding the pathogenicity of N. dimidiatum and its role as an opportunistic pathogen. This offers the potential for a more effective defense against N. dimidiatum.


Subject(s)
Cactaceae , Plant Growth Regulators , Transcriptome , Cactaceae/genetics , Host-Pathogen Interactions/genetics , Disease Resistance/genetics , Metabolic Networks and Pathways , Gene Expression Profiling , Plant Diseases/genetics , Gene Expression Regulation, Plant
16.
Adv Mater ; 36(5): e2308952, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37951211

ABSTRACT

Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.

17.
Br J Pharmacol ; 181(7): 1107-1127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37766518

ABSTRACT

BACKGROUND AND PURPOSE: Psoriasis is a common autoimmune skin disease that significantly diminishes patients' quality of life. Interactions between primary afferents of the somatosensory system and the cutaneous immune system mediate the pathogenesis of psoriasis. This study aims to elucidate the molecular mechanisms of how primary sensory neurons regulate psoriasis formation. EXPERIMENTAL APPROACH: Skin and total RNA were extracted from wild-type (WT) and ASH1-like histone lysine methyltransferase (Ash1l+/- ) mice in both naive and imiquimod (IMQ)-induced psoriasis models. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence-activated cell sorting (FACS) were then performed. Microfluidic chamber coculture was used to investigate the interaction between somatosensory neurons and bone marrow dendritic cells (BMDCs) ex vivo. Whole-cell patch clamp recordings were used to evaluate neuronal excitability after Ash1L haploinsufficiency in primary sensory neurons. KEY RESULTS: The haploinsufficiency of ASH1L, a histone methyltransferase, in primary sensory neurons causes both neurite hyperinnervation and increased neuronal excitability, which promote miR-let-7b release from primary afferents in the skin in a neuronal activity-dependent manner. With a 'GUUGUGU' core sequence, miR-let-7b functions as an endogenous ligand of toll-like receptor 7 (TLR7) and stimulates the activation of dermal dendritic cells (DCs) and interleukin (IL)-23/IL-17 axis, ultimately exacerbating the symptoms of psoriasis. Thus, by limiting miR-let-7b release from primary afferents, ASH1L prevents dermal DC activation and ameliorates psoriasis. CONCLUSION AND IMPLICATIONS: Somatosensory neuron ASH1L modulates the cutaneous immune system by limiting neuronal activity-dependent release of miR-let-7b, which can directly activate dermal DCs via TLR7 and ultimately lead to aggravated psoriatic lesion.


Subject(s)
MicroRNAs , Psoriasis , Humans , Animals , Mice , Toll-Like Receptor 7/genetics , Quality of Life , Psoriasis/etiology , Psoriasis/pathology , Skin/pathology , MicroRNAs/genetics , Neurons/pathology , Disease Models, Animal , DNA-Binding Proteins , Histone-Lysine N-Methyltransferase
18.
Adv Healthc Mater ; 13(3): e2302063, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37916920

ABSTRACT

3D printing technology has revolutionized the field of wound dressings, offering tailored solutions with mechanical support to facilitate wound closure. In addition to personalization, the intricate nature of the wound healing process requires wound dressing materials with diverse properties, such as moisturization, flexibility, adhesion, anti-oxidation and degradability. Unfortunately, current materials used in digital light processing (DLP) 3D printing have been inadequate in meeting these crucial criteria. This study introduces a novel DLP resin that is biocompatible and consists of only three commonly employed non-toxic compounds in biomaterials, that is, dopamine, poly(ethylene glycol) diacrylate, and N-vinylpyrrolidone. Simple as it is, this material system fulfills all essential functions for effective wound healing. Unlike most DLP resins that are non-degradable and rigid, this material exhibits tunable and rapid degradation kinetics, allowing for complete hydrolysis within a few hours. Furthermore, the high flexibility enables conformal application of complex dressings in challenging areas such as finger joints. Using a difficult-to-heal wound model, the manifold positive effects on wound healing in vivo, including granulation tissue formation, inflammation regulation, and vascularization are substantiated. The simplicity and versatility of this material make it a promising option for personalized wound care, holding significant potential for future translation.


Subject(s)
Adhesives , Polyethylene Glycols , Wound Healing , Bandages , Printing, Three-Dimensional
19.
BMC Endocr Disord ; 23(1): 271, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057752

ABSTRACT

BACKGROUND: The association involving N6-methyladenosine (m6A) modification, molecular subtype and specific immune cell group in tumor microenvironment has been the focus of recent studies. The underlying function of m6A modification in thyroid cancer (TC) remains elusive. METHODS: The m6A modification regulations, molecular character and tumor immune profile of 461 TC patients were explored and then the correlation between them were comprehensively evaluated. The m6Ascore was established using principal component analysis (PCA) to quantify the m6A pattern of individual TC patients. The prognostic significance of the m6Ascore was evaluated by multivariate Cox regression analysis. RESULTS: Four m6Aclusters (mc1, 2, 3, 4)-characterized by differences in extent of aneuploidy, expression of immunomodulatory genes, mRNA or lncRNA expression pattern and prognosis were identified. T Preliminary validation of m6Ascore was a potential independent prognostic factor of TC involving in mc3. Finally, the prognostic value of the m6Ascore and its association with copy number variation (CNV) and tumor immune microenvironment (TIME) of TC in mc3 were verified. CONCLUSIONS: The correlation between m6A modification, the copy number burden and tumor immune landscape in TC was demonstrated. A m6Acluster-mc3 with low m6Ascore and high CNV molecular subtype was identified with poor clinical prognosis, low infiltrating immunocyte and weak effector T cell. A three-gene clinical prognosis model for TC based on 4 m6a cluster expression was established. Understanding of TIME is enhanced by comprehensive assessment of m6A patterns in individual TC patients and gives a new insight toward improved immunotherapy strategies for TC cancer patients.


Subject(s)
DNA Copy Number Variations , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Adenine , Immunomodulation , Tumor Microenvironment/genetics
20.
Med Oncol ; 41(1): 35, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38151631

ABSTRACT

The epithelial cell adhesion molecule (EpCAM) is a critical glycoprotein involved in cell cycle progression, proliferation, differentiation, migration, and immune evasion. Its role as a target for bispecific antibodies has shown promise in annihilating cancer cells. EpCAM's potential as a biomarker for tumor-initiating cells, characterized by self-renewal and tumorigenic capabilities, underscores its value in early cancer detection, immunotherapy, and targeted drug delivery. While EpCAM monotherapies have been met with limited success, bispecific antibodies targeting both EpCAM and other proteins have exhibited encouraging results in colorectal cancer (CRC) research. The integration of EpCAM-directed nanotechnology in drug delivery systems has emerged as a pivotal innovation in CRC treatment. Moreover, developing chimeric antigen receptor (CAR) T-cell and CAR natural killer (NK) cell therapies opens promising therapeutic avenues for EpCAM-positive CRC patients. Although preliminary, this review sets the stage for future advances. Additionally, this study advances our understanding of the role of non-coding RNAs in CRC, which may be pivotal in gene regulation and could provide insights into the molecular underpinning. The findings suggest that lncRNA, miRNA, and circRNA could serve as novel therapeutic targets or biomarkers, further enriching the landscape of CRC diagnostics and therapeutics.


Subject(s)
Antibodies, Bispecific , Colorectal Neoplasms , Humans , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Killer Cells, Natural , Immunotherapy, Adoptive/methods , Biomarkers , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...