Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35807245

ABSTRACT

The polyphenolic extract of Ilex latifolia (PEIL) exhibits a variety of biological activities. An evaluation of the parameters influencing the ultrasonic extraction process and the assessment of PEIL antioxidant activity are presented herein. Response surface methodology (RSM) was used to optimize the experimental conditions for the polyphenols ultrasonic-assisted extraction (UAE) from the leaves of Ilex latifolia. We identified the following optimal conditions of PEIL: ethanol concentration of 53%, extraction temperature of 60 °C, extraction time of 26 min and liquid−solid ratio of 60 mL/g. Using these parameters, the UAE had a yield of 35.77 ± 0.26 mg GAE/g, similar to the value we predicted using RSM (35.864 mg GAE/g). The antioxidant activity of PEIL was assessed in vitro, using various assays, as well as in vivo. We tested the effects of various doses of PEIL on D-galactose induced aging. Vitamin C (Vc) was used as positive control. After 21 days of administration, we measured superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, malondialdehyde (MDA) levels in mouse serum and liver tissue. The results demonstrated that the PEIL exhibits potent radical scavenging activity against 1,1-diphenyl-2-picrythydrazyl (DPPH∙), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+), and hydroxyl (∙OH) radicals. The serum concentrations of SOD and GSH-Px were higher, and MDA levels were lower, in the medium- and high-dose PEIL-treated groups than those in the aging group (p < 0.01), and the activity of MDA was lower than those of the model group (p < 0.01). The liver concentrations of SOD and GSH-Px were higher (p < 0.05), and MDA levels were lower, in the medium- and high-dose PEIL-treated groups than those in the aging control group (p < 0.01). These results suggest that optimizing the conditions of UAE using RSM could significantly increase the yield of PEIL extraction. PEIL possesses strong antioxidant activity and use as a medicine or functional food could be further investigated.


Subject(s)
Antioxidants , Ilex , Animals , Antioxidants/pharmacology , Mice , Plant Leaves , Polyphenols/pharmacology , Superoxide Dismutase
2.
Int J Biol Sci ; 18(6): 2419-2438, 2022.
Article in English | MEDLINE | ID: mdl-35414774

ABSTRACT

The most frequent genetic alterations of the TP53 gene in human cancer were reported. TP53 mutation gains new function as a target of genetic instability, which is associated with increased tumor progression and poor survival rate in patients. In this study, more than three hundred colorectal cancer patients' samples were firstly analyzed, and the results showed that patients with mutant p53 had higher levels of AKT phosphorylation and PD-L1 expression, which were next verified both in cell lines in vitro and patients' samples in vivo. Further studies demonstrated that the hotspot of mutant p53 directly binds to the promoter of PHLPP2 to inhibit its transcription, and resulting in down-regulating its protein expressional level. Subsequently, AKT was released and activated, promoting tumor proliferation and metastasis. In parallel, 4EBP1/eIF4E was identified as downstream executors of AKT to enhance the translational level of PD-L1, which decreased the activation of T cells. Besides, inhibiting AKT/mTOR pathway significantly suppressed PD-L1 expression, tumor growth, and immune escape in p53 mutated cells. In conclusion, mutant p53 achieved its Gain-of-Function by transcriptionally inhibiting PHLPP2 and activating AKT, which suppresses immune response and advances tumor growth. Thus, this study provides an excellent basis for a further understanding of the clinical treatment of neoplastic diseases for patients with mutant p53, with an emphasis on immunotherapy.


Subject(s)
B7-H1 Antigen , Proto-Oncogene Proteins c-akt , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line, Tumor , Gain of Function Mutation , Genes, p53 , Humans , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53/genetics
3.
Cell Death Discov ; 7(1): 375, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34864826

ABSTRACT

In recent years, many studies have shown that autophagy plays a vital role in the resistance of tumor chemotherapy. However, the interaction between autophagy and cell death has not yet been clarified. In this study, a new specific ERK inhibitor CC90003 was found to suppress colorectal cancer growth by inducing cell death both in vitro and in vivo. Studies have confirmed that higher concentrations of ROS leads to autophagy or cell death. In this research, the role of CC90003-induced ROS was verified. But after inhibiting ROS by two kinds of ROS inhibitors NAC and SFN, the autophagy induced by CC90003 decreased, while cell death strengthened. In parallel, protective autophagy was also induced, while in a p53-dependent manner. After silencing p53 or using the p53 inhibitor PFTα, the autophagy induced by CC90003 was weakened and the rate of cell death increases. Therefore, we confirmed that CC90003 could induce autophagy by activating ROS/p53. Furthermore, in the xenograft mouse model, the effect was obtained remarkably in the combinational treatment group of CC90003 plus CQ, comparing with that of the single treatment groups. In a word, our results demonstrated that targeting ERK leads to cell death and p53/ROS-dependent protective autophagy simultaneously in colorectal cancer, which offers new potential targets for clinical therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...