Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Chem Asian J ; : e202400086, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676953

ABSTRACT

A visible light-catalyzed radical coupling reaction of polysulfide reagents with aryldiazonium was developed, which gave thiosulfonates under mild conditions. In this reaction, the thiosulfonates were isolated in good yields with a broad tolerance to functional groups. And the synthesis of diaryl monosulfides were achieved through a step-by-step reaction of two molecular aryldiazonium with DBSPS, where the sulfur source was provided by DBSPS. It was worth noting that the reaction of this monosulfides could also be achieved by a one pot two-step process. The described polysulfide reagents were able to produce three new radicals: sulfonyl radicals, sulfur-sulfonyl radicals and sulfur-sulfur-sulfonyl radicals.

2.
Injury ; 55(3): 111367, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301489

ABSTRACT

DESIGN: Clinimetric evaluation study. INTRODUCTION: The Chinese Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire has necessitated the development of a revised version to the specific needs of individuals with upper extremity injuries with the progress of times and lifestyle changes. PURPOSE OF THE STUDY: This research aimed to evaluate the reliability and validity of Modified Chinese Disability of Arm, Shoulder and Hand (MC-DASH) questionnaire in individuals with upper extremity injuries. METHODS: One hundred and one individuals with upper extremity injuries (UEI) were recruited. The function of upper extremity was measured using the electronic version of MC-DASH, and compared against the Chinese Disability of Arm, Shoulder and Hand. The MC-DASH was reassessed within three days in all individuals. We investigated the internal consistency, test-retest reliability, content validity, criterion validity, and construct validity of MC-DASH. RESULTS: The internal consistency was deemed sufficient, as indicated by a Cronbach's alpha of 0.986 and an intraclass correlation coefficient of 0.957. Moreover, the mean total scores of MC-DASH on the first-test and retest were 37.86 and 38.19, respectively (ICC: 0.957, 95 %CI: 0.937-0.971, p < 0.001). Furthermore, the MC-DASH version exhibited satisfactory content validity evidenced by its strong correlation (R= 0.903, p < 0.001) with the Chinese DASH. Three major influencing factors were identified from 37 items. The cumulative variance contribution rate of the MC-DASH questionnaire was 75.76 %, confirming its construct validity. CONCLUSION: The Modified Chinese Disability of Arm, Shoulder and Hand questionnaire has been shown to be a valid, reliable, and practical tool for use in patients with upper extremity injuries.


Subject(s)
Arm Injuries , Shoulder , Humans , Arm , Reproducibility of Results , Disability Evaluation , Upper Extremity , Hand , Arm Injuries/diagnosis , Surveys and Questionnaires , Blindness , China/epidemiology
3.
J Environ Manage ; 351: 119763, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38071921

ABSTRACT

Rhizosphere is a soil volume of high spatio-temporal heterogeneity and intensive plant-soil-microbial interactions, for which visualization and process quantification is of highest scientific and applied relevance, but still very challenging. A novel methodology for quick assessment of two-dimensional distribution of available phosphorus (P) in rhizosphere was suggested, tested, and development up to the application platform. Available P was firstly trapped by an in-situ diffusive gradients in thin-films (DGT) sampler with precipitated zirconia as the binding gel, and subsequently, the loaded gel was analyzed with an optimized colorimetric imaging densitometry (CID). The imaging platform was established linking: i) DGT, ii) planar optode, and iii) soil zymography techniques to simultaneously determine available P, oxygen, and acid phosphatase in rhizosphere at sub-millimeter spatial scales. The DGT identified available P level in rice rhizosphere were spatially overlapping to the localized redox hotspots and phosphatase activity. The spatial relationship between available P and acid phosphatase activity was dependent on root development. The root radial oxygen loss (ROL) remained active during the experimental observations (2-3 days), while a flux of available P of 10 pg cm-2 s-1 was visualized within 2-3 mm of roots, confirming the correlative response of rice roots to oxygen secretion and P uptake. Summarizing, the established imaging platform is suitable to capture spatial heterogeneity and temporal dynamics of root activities, nutrient bioavailability, ROL and enzyme activities in rhizosphere.


Subject(s)
Oryza , Phosphorus , Phosphorus/metabolism , Rhizosphere , Soil , Oxygen/metabolism , Acid Phosphatase/metabolism , Plant Roots/metabolism
4.
Chemosphere ; 349: 140988, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122945

ABSTRACT

Cadmium (Cd) activation, especially at a high spatial resolution, in paddy soils with a high geogenic Cd background is yet to be understood. To investigate the temporal and spatial patterns of Cd activation in rice rhizosphere, pot and rhizotron experiments were conducted using four paddy soils with high geogenic Cd (0.11-3.70 mg kg-1) from Guangxi, southwestern China. The pot experiment results showed that porewater Cd concentrations initially decreased and then increased over the complete rice growth period, reaching its lowest value during the late-tillering and early-filling stages. Besides, correlation analysis identified organic matter and root manganese (Mn) content as the main factors affecting rice Cd uptake, with Mn having a negative effect and organic matter having a positive effect. Sub-millimeter two-dimensional chemical imaging revealed that the distribution of labile Cd in the rhizosphere (by diffusive gradients in thin-films, or DGT) was influenced by the root system and soil properties, such as pH (by planar optode) and acid phosphatase activity (by soil zymography). Soil acid phosphatase activity increased under Cd stress. The overall pH at rice rhizosphere decreased. Moreover, a close relationship was found between the spatial distributions of soil labile Mn and Cd at the rhizosphere, with higher Mn being associated with lower Cd lability. This study highlights Mn as a key element in regulating rice Cd uptake and enlightens future Mn-based strategies for addressing Cd pollution in rice paddy soils, especially in karst areas with high geochemical background.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Oryza/chemistry , Rhizosphere , Soil Pollutants/analysis , China , Manganese/analysis , Acid Phosphatase
5.
J Hazard Mater ; 465: 133330, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38147757

ABSTRACT

Cadmium (Cd) contamination of selenium (Se)-rich soils may jeopardize the nutritional benefits of Se-biofortified crops. This study employed diffusive gradients in thin-films (DGT) technique and DIFS (DGT-induced fluxes in soils) model to understand the interdependency and driving factors of Se and Cd distribution and desorption kinetics across 50 soils from south China with naturally elevated levels. DGT-labile Se was the highest (up to 2.66 µg L-1) in non-carbonate/shale-derived soils, while Cd was maximal (5.53 µg L-1) in carbonate-based soils, reflecting soil background concentrations and soil characteristics. Over one-third of the soils showed labile Se:Cd molar ratio below 0.7, suggesting Cd phytotoxicity risks. The DIFS-derived response times (Tc) and desorption rate constants (k-1) suggested that Se was resupplied to the soil solution faster than Cd in soils with higher pH and SOM level, but Se resupply was still restricted due to the rapid depletion of its labile pool. As the first study of Se and Cd release kinetics in soils, our results reveal dependence on soil parent materials, with low labile Se:Cd soils presenting greater Cd hazards. By elucidating Se and Cd lability and interactions in soils, our findings help to inform management strategies to balance reduced Cd risk with adequate Se availability.

6.
J Org Chem ; 88(22): 15871-15880, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37882877

ABSTRACT

Herein, we report a novel method for the synthesis of thioesters and acyl disulfides via nickel-catalyzed reductive cross-electrophile coupling of acid chlorides with tetrasulfides. This approach for the synthesis of thioesters and acyl disulfides is convenient and practical under mild reaction conditions, relying on easy availability. In addition, a wide range of thioesters and acyl disulfides were obtained in medium to good yields with good functional group tolerance. Moreover, thioesters and acyl disulfides can also be prepared at the gram scale, indicating that they have certain potential for industrial application.

7.
Signal Transduct Target Ther ; 8(1): 345, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37699892

ABSTRACT

Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Amino Acids , Cell Cycle , Cell Differentiation , Cell Proliferation
8.
Redox Rep ; 28(1): 2251234, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37642220

ABSTRACT

BACKGROUND: Metabolic alteration drives renal cell carcinoma (RCC) development, while the impact of melatonin (MLT), a neurohormone secreted during darkness, on RCC cell growth and underlying mechanisms remains unclear. METHODS: We detected concentration of metabolites through metabolomic analyses using UPLC-MS/MS, and the oxygen consumption rate was determined using the Seahorse Extracellular Flux analyzer. RESULTS: We observed that MLT effectively inhibited RCC cell growth both in vitro and in vivo. Additionally, MLT increased ROS levels, suppressed antioxidant enzyme activity, and induced apoptosis. Furthermore, MLT treatment upregulated key TCA cycle metabolites while reducing aerobic glycolysis products, leading to higher oxygen consumption rate, ATP production, and membrane potential. Moreover, MLT treatment suppressed phosphorylation of Akt, mTOR, and p70 S6 Kinase as well as the expression of HIF-1α/VEGFA in RCC cells; these effects were reversed by NAC (ROS inhibitors). Conversely, MLT synergistically inhibited cell growth with sunitinib and counteracted the Warburg effect induced by sunitinib in RCC cells. CONCLUSIONS: In conclusion, our results indicate that MLT treatment reverses the Warburg effect and promotes intracellular ROS production, which leads to the suppression of Akt/mTOR/S6K signaling pathway, induction of cell apoptosis, and synergistically inhibition of cell growth with sunitinib in RCC cells. Overall, this study provides new insights into the mechanisms underlying anti-tumor effect of MLT in RCC cells, and suggests that MLT might be a promising therapeutic for RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Melatonin , Humans , Carcinoma, Renal Cell/drug therapy , Sunitinib , Melatonin/pharmacology , Proto-Oncogene Proteins c-akt , Chromatography, Liquid , Reactive Oxygen Species , Tandem Mass Spectrometry , TOR Serine-Threonine Kinases , Antioxidants , Apoptosis , Kidney Neoplasms/drug therapy
9.
Org Lett ; 25(10): 1776-1781, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36867002

ABSTRACT

Herein, we provide a novel method for the synthesis of 1,3-dibenzenesulfonylpolysulfane (DBSPS), which further reacts with boronic acids to afford thiosulfonates. Commercially available boron compounds greatly expanded the range of thiosulfonates. Experimental and theoretical mechanistic investigations suggested that DBSPS could provide both thiosulfone fragments and dithiosulfone fragments, but the generated aryl dithiosulfonates were unstable and decomposed into thiosulfonates.

10.
Sci Rep ; 13(1): 2392, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765080

ABSTRACT

After ovulation, the mitochondrial enzyme CYP11A1 cleavage the cholesterol into pregnenolone for progesterone synthesis, suggesting that mitochondrial dynamics play a vital role in the female reproductive system. The changes in the mitochondria dynamics throughout the ovarian cycle have been reported in literature, but the correlation to its role in the ovarian cycle remains unclear. In this study, mitochondrial fusion promotor, M1, was used to study the impact of mitochondria dynamics in the female reproductive system. Our results showed that M1 treatment in mice can lead to the disruptions of estrous cycles in vagina smears. The decrease in serum LH was recorded in the animal. And the inhibitions of progesterone secretion and ovulations were observed in ovarian culture. Although no significant changes in mitochondrial networks were observed in the ovaries, significant up-regulation of mitochondrial respiratory complexes was revealed in M1 treatments through transcriptomic analysis. In contrast to the estrogen and steroid biosynthesis up-regulated in M1, the molecules of extracellular matrix, remodeling enzymes, and adhesion signalings were decreased. Collectively, our study provides novel targets to regulate the ovarian cycles through the mitochondria. However, more studies are still necessary to provide the functional connections between mitochondria and the female reproductive systems.


Subject(s)
Mitochondrial Dynamics , Progesterone , Mice , Female , Animals , Proestrus , Estrous Cycle/physiology , Ovary , Estradiol
11.
iScience ; 26(3): 106119, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36852268

ABSTRACT

Long-read sequencing (LRS) facilitates both the genome assembly and the discovery of structural variants (SVs). Here, we built a graph-based pig pangenome by incorporating 11 LRS genomes with an average of 94.01% BUSCO completeness score, revealing 206-Mb novel sequences. We discovered 183,352 nonredundant SVs (63% novel), representing 12.12% of the reference genome. By genotyping SVs in an additional 196 short-read sequencing samples, we identified thousands of population stratified SVs. Particularly, we detected 7,568 Tibetan specific SVs, some of which demonstrate significant population differentiation between Tibetan and low-altitude pigs, which might be associated with the high-altitude hypoxia adaptation in Tibetan pigs. Further integrating functional genomic data, the most promising candidate genes within the SVs that might contribute to the high-altitude hypoxia adaptation were discovered. Overall, our study generates a benchmark pangenome resource for illustrating the important roles of SVs in adaptive evolution, domestication, and genetic improvement of agronomic traits in pigs.

13.
BMC Genom Data ; 23(1): 63, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945500

ABSTRACT

BACKGROUND: It has been previously demonstrated that hyaluronan (HA) potentially regulates the initiation and propagation of bladder cancer (BLCA). HYAL3 encodes hyaluronidase and is a potential therapeutic target for BLCA. We aimed to explore the role that HYAL3 plays in BLCA pathogenesis. METHODS: HYAL3 expression in BLCA specimens was analyzed using The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) cohort as well as confirmed in cell lines and The Human Protein Atlas. Then, associations between HYAL3 expression and clinicopathological data were analyzed using survival curves and receiver-operating characteristic (ROC) curves. The functions of HYAL3 were further dissected using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the protein-protein interaction network. Finally, we harnessed the Tumor IMmune Estimation Resource and Gene Expression Profiling Interactive Analysis to obtain correlations between HYAL3 expression, infiltrating immunocytes, and the corresponding immune marker sets. RESULTS: HYAL3 expression varied greatly between many types of cancers. In addition, a higher HYAL3 expression level predicted a poor overall survival (OS) in both TCGA-BLCA and GEO gene chips (P < 0.05). HYAL3 also exhibited an acceptable diagnostic ability for the pathological stage of BLCA (area under the receiver-operating characteristic curve = 0.769). Furthermore, HYAL3 acted as an independent prognostic factor in BLCA patients and correlated with the infiltration of various types of immunocytes, including B cells, CD8+ T cells, cytotoxic cells, T follicular helper cells, and T helper (Th) 2 cells. CONCLUSION: HYAL3 might serve as a potential biomarker for predicting poor OS in BLCA patients and correlated with immunocyte infiltration in BLCA.


Subject(s)
Urinary Bladder Neoplasms , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Urinary Bladder Neoplasms/genetics
14.
PeerJ ; 10: e13867, 2022.
Article in English | MEDLINE | ID: mdl-35990905

ABSTRACT

Aims: Studies have observed changes in autophagic flux in the adipose tissue of type 2 diabetes patients with obesity. However, the role of autophagy in obesity-induced insulin resistance is unclear. We propose to confirm the effect of a high-fat diet (HFD) on autophagy and insulin signaling transduction from adipose tissue to clarify whether altered autophagy-mediated HFD induces insulin resistance, and to elucidate the possible mechanisms in autophagy-regulated adipose insulin sensitivity. Methods: Eight-week-old male C57BL/6 mice were fed with HFD to confirm the effect of HFD on autophagy and insulin signaling transduction from adipose tissue. Differentiated 3T3-L1 adipocytes were treated with 1.2 mM fatty acids (FAs) and 50 nM Bafilomycin A1 to determine the autophagic flux. 2.5 mg/kg body weight dose of Chloroquine (CQ) in PBS was locally injected into mouse epididymal adipose (10 and 24 h) and 40 µM of CQ to 3T3-L1 adipocytes for 24 h to evaluate the role of autophagy in insulin signaling transduction. Results: The HFD treatment resulted in a significant increase in SQSTM1/p62, Rubicon expression, and C/EBP homologous protein (CHOP) expression, yet the insulin capability to induce Akt (Ser473) and GSK3ß (Ser9) phosphorylation were reduced. PHLPP1 and PTEN remain unchanged after CQ injection. In differentiated 3T3-L1 adipocytes treated with CQ, although the amount of phospho-Akt stimulated by insulin in the CQ-treated group was significantly lower, CHOP expressions and cleaved caspase-3 were increased and bafilomycin A1 induced less accumulation of LC3-II protein. Conclusion: Long-term high-fat diet promotes insulin resistance, late-stage autophagy inhibition, ER stress, and apoptosis in adipose tissue. Autophagy suppression may not affect insulin signaling transduction via phosphatase expression but indirectly causes insulin resistance through ER stress or apoptosis.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Male , Animals , Diet, High-Fat/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Adipose Tissue/metabolism , Obesity/drug therapy , Insulin/pharmacology , Autophagy
15.
Animals (Basel) ; 12(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35804629

ABSTRACT

White spot syndrome virus (WSSV) has been reported to cause severe economic loss in the shrimp industry. With WSSV being a large virus still under investigation, the 3D structure of its assembly remains unclear. The current study was planned to clarify the 3D structures of WSSV infections in the cell nucleus of red swamp crayfish (Procambarus clarkii). The samples from various tissues were prepared on the seventh day post-infection. The serial sections of the intestinal tissue were obtained for electron tomography after the ultrastructural screening. After 3D reconstruction, the WSSV-associated structures were further visualized, and the expressions of viral proteins were confirmed with immuno-gold labeling. While the pairs of sheet-like structures with unknown functions were observed in the nucleus, the immature virions could be recognized by the core units of nucleocapsids on a piece of the envelope. The maturation of the particle could include the elongation of core units and the filling of empty nucleocapsids with electron-dense materials. Our observations may bring to light a possible order of WSSV maturation in the cell nucleus of the crayfish, while more investigations remain necessary to visualize the detailed viral-host interactions.

17.
Neurochem Res ; 47(8): 2244-2253, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35585298

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is a critical cosubstrate for enzymes involved in supplying energy to the brain. Nicotinamide riboside (NR), an NAD+ precursor, emerges as a neuroprotective factor after chronic brain insults. However, researchers have not determined whether it improves cognition after acute ischemia. In the present study, mice with middle cerebral artery occlusion were treated with NR chloride (NRC, 300 mg/kg, IP., 20 min after reperfusion). The results of the Morris water maze test revealed better recovery of learning and memory function in the NRC-treated group. Acute NRC treatment decreased hippocampal infarct volume, reduced neuronal loss and apoptosis in the hippocampus. Western blot and high-performance liquid chromatography assays of hippocampal tissues revealed that the activation of Sirtin-1 and adenosine 5' monophosphate-activated protein kinase was increased, the NAD content was elevated, and the production of adenosine triphosphate was strengthened by NRC. Collectively, acute NRC treatment increased the energy supply, reduced the neuronal loss and apoptosis, protected the hippocampus and ultimately promoted the recovery of cognitive function after brain ischemia.


Subject(s)
Chlorides , NAD , Animals , Cognition , Hippocampus/metabolism , Infarction, Middle Cerebral Artery/metabolism , Mice , NAD/metabolism , Niacinamide/analogs & derivatives , Pyridinium Compounds
18.
Viruses ; 14(4)2022 04 18.
Article in English | MEDLINE | ID: mdl-35458569

ABSTRACT

Positive-stranded RNA viruses modify host organelles to form replication organelles (ROs) for their own replication. The enteroviral 3A protein has been demonstrated to be highly associated with the COPI pathway, in which factors operate on the ER-to-Golgi intermediate and the Golgi. However, Sar1, a COPII factor exerting coordinated action at endoplasmic reticulum (ER) exit sites rather than COPI factors, is required for the replication of foot-and-mouth disease virus (FMDV). Therefore, further understanding regarding FMDV 3A could be key to explaining the differences and to understanding FMDV's RO formation. In this study, FMDV 3A was confirmed as a peripheral membrane protein capable of modifying the ER into vesicle-like structures, which were neither COPII vesicles nor autophagosomes. When the C-terminus of 3A was truncated, it was located at the ER without vesicular modification. This change was revealed using mGFP and APEX2 fusion constructs, and observed by fluorescence microscopy and electron tomography, respectively. For the other 3A truncation, the minimal region for modification was aa 42-92. Furthermore, we found that the remodeling was related to two COPII factors, Sar1 and Sec12; both interacted with 3A, but their binding domains on 3A were different. Finally, we hypothesized that the N-terminus of 3A would interact with Sar1, as its C-terminus simultaneously interacted with Sec12, which could possibly enhance Sar1 activation. On the ER membrane, active Sar1 interacted with regions of aa 42-59 and aa 76-92 from 3A for vesicle formation. This mechanism was distinct from the traditional COPII pathway and could be critical for FMDV RO formation.


Subject(s)
Foot-and-Mouth Disease Virus , Monomeric GTP-Binding Proteins , Animals , Coat Protein Complex I/metabolism , Endoplasmic Reticulum/metabolism , Foot-and-Mouth Disease Virus/physiology , Golgi Apparatus/metabolism , Monomeric GTP-Binding Proteins/metabolism , Protein Transport/physiology
19.
Clin Rehabil ; 36(5): 693-702, 2022 May.
Article in English | MEDLINE | ID: mdl-34985366

ABSTRACT

OBJECTIVES: Repetitive peripheral magnetic stimulation (rPMS) is a non-invasive method that activates peripheral nerves and enhances muscle strength. This study aimed to investigate the effect of rPMS applied in early subacute stroke on severe upper extremity impairment. DESIGN: Randomized controlled trial. SETTING: Rehabilitation department of a university hospital. SUBJECTS: People aged 30-80 years with no practical arm function within four weeks of a first stroke. INTERVENTIONS: Participants were randomly assigned to either the rPMS group (n = 24, 20Hz and 2400 pulses of rPMS to triceps brachii and extensor digitorum muscles daily for two weeks in addition to conventional physiotherapy) or the control group (n = 20, conventional physiotherapy). MAIN MEASURES: The primary outcome was the upper extremity motor section of Fugl-Meyer Assessment after treatment. Secondary outcomes included Barthel Index and root mean square of surface electromyography for muscle strength and stretch-induced spasticity of critical muscles of the upper extremity. Data presented: mean (SD) or median (IQR). RESULTS: The rPMS group showed more significant improvements in the Fugl-Meyer Assessment (12.5 (2.5) vs. 7.0 (1.4), P < 0.001), Barthel Index (15 (5) vs. 10 (3.7), P < 0.001), and strength-root mean square (biceps brachii: 20.5 (4.8) vs. 6.2 (2.7), p < 0.001; triceps brachii: 14.9 (5.8) vs. 4.3 (1.2), p < 0.001; flexor digitorum: 5.1 (0.8) vs. 4.0 (1.1), p < 0.001) compared with the control group. CONCLUSION: In patients with no functional arm movement, rPMS of upper limb extensors improves arm function and muscle strength for grip and elbow flexion and extension.


Subject(s)
Stroke Rehabilitation , Stroke , Adult , Aged , Aged, 80 and over , Humans , Magnetic Phenomena , Middle Aged , Muscle Spasticity , Stroke/complications , Stroke/diagnosis , Stroke Rehabilitation/methods , Treatment Outcome , Upper Extremity
20.
Cancer Biother Radiopharm ; 37(2): 125-140, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32614608

ABSTRACT

Background: To explore the clinical significance of miR-125b-5p and its potential mechanisms in lung squamous cell carcinoma (LUSC). Materials and Methods: An integrated analysis of data from in-house quantitative real-time polymerase chain reaction (qRT-PCR), microRNA-sequencing, and microarray assays to appraise the expression level of miR-125b-5p in LUSC tissues compared to adjacent noncancerous controls. The authors identified the candidate targets of miR-125b-5p and conducted functional analysis using computational biology strategies from gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, disease ontology (DO), and protein-protein interaction (PPI) network analyses to investigate the prospective mechanisms. Results: According to qRT-PCR results, the expression level of miR-125b-5p was markedly decreased in LUSC tissues compared to noncancerous control tissues. Receiver operating characteristic and summary receiver operating characteristic analyses showed that miR-125b-5p had good specificity and sensitivity for distinguishing LUSC tissue from noncancerous lung tissue. The standard mean difference revealed that men and women with lower expression levels of miR-125b-5p may have a higher risk for LUSC. KEGG analysis and DO analysis intimated that target genes were evidently enriched in pyrimidine metabolism and pancreatic carcinoma. The PPI network of the top assembled KEGG pathway indicated that RRM2, UMPS, UCK2, and CTPS1 were regarded as crucial target genes for miR-125b-5p, and RRM2 was eventually deemed a key target. Conclusions: The authors' findings implicate a low expression level of miR-125b-5p in LUSC. A tumor-suppressive role of miR-125b-5p is proposed, based on its effects on LUSC tumor growth, clinical stage progression, and lymph node metastasis.


Subject(s)
Carcinoma, Squamous Cell , Lung Neoplasms , MicroRNAs , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...