Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(42): 63768-63781, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35461422

ABSTRACT

In this study, hydrochars and biochars were prepared from rice husk (RH) and Zizania latifolia straw (ZL) at various pyrolysis temperatures as absorbents, for removing toxic ions from single and competitive solutions of cadmium (Cd) and/or lead (Pb). The adsorption efficiencies of Cd and Pb in both hydrochars and biochars were lower in the competitive solution than in the single solution, and the absorbents had a stronger affinity for Pb than for Cd. Compared to hydrochars, biochars showed more favorable Cd and Pb adsorption capacities in the single or competitive solutions, and the ZL biochars had the maximum adsorption capacity among them. The SEM and FTIR analyses suggest that the predominant adsorption mechanisms of biochars and hydrochars are surfaces monolayer adsorption, precipitation, complexation, and coordination with π electrons. However, hydrochars derived from ZL exhibited an optimal additional Pb adsorption capacity in the high-level (5 ~ 10 mg L-1 Cd and Pb) competitive solution. This extra Pb adsorption of hydrochars was likely attributed to the Si-O-Si groups and more bumpy structure. Zizania latifolia straw biochar had a huge potential removal of Cd or/and Pb, and applying hydrochars as absorbents was beneficial to the removal of Cd and Pb in polluted solutions.


Subject(s)
Cadmium , Oryza , Adsorption , Cadmium/analysis , Charcoal/chemistry , Lead
2.
Plant Cell Physiol ; 63(3): 340-352, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-34981810

ABSTRACT

Silicon (Si) can alleviate aluminum (Al) toxicity in rice (Oryza sativa L.), but the mechanisms underlying this beneficial effect have not been elucidated, especially under long-term Al stress. Here, the effects of Al and Si on the suberization and development of rice roots were investigated. The results show that, as the Al exposure time increased, the roots accumulated more Al, and Al enhanced the deposition of suberin in roots, both of which ultimately inhibited root growth and nutrient absorption. However, Si restricted the apoplastic and symplastic pathways of Al in roots by inhibiting the uptake and transport of Al, thereby reducing the accumulation of Al in roots. Meanwhile, the Si-induced drop in Al concentration reduced the suberization of roots caused by Al through down-regulating the expression of genes related to suberin synthesis and then promoted the development of roots (such as longer and more adventitious roots and lateral roots). Moreover, Si also increased nutrient uptake by Al-stressed roots and thence promoted the growth of rice. Overall, these results indicate that Si reduced Al-induced suberization of roots by inhibiting the uptake and transport of Al in roots, thereby amending root growth and ultimately alleviating Al stress in rice. Our study further clarified the toxicity mechanism of Al in rice and the role of Si in reducing Al content and restoring root development under Al stress.


Subject(s)
Oryza , Aluminum/pharmacology , Oryza/metabolism , Plant Roots/metabolism , Silicon/metabolism , Silicon/pharmacology
3.
J Hazard Mater ; 423(Pt B): 127180, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34544001

ABSTRACT

Microbial mechanism of in-situ remediation of arsenic (As) in As-contaminated paddy fields by silicon (Si) fertilization has been rarely reported, especially under continuous rice cultivation and Si applications. In this study, two Si fertilizers were applied for three phases in five consecutive rice seasons to investigate the long-lasting impacts on in-situ remediation of As, and the underpinning microbial mechanism of root-associated compartments (bulk soil, rhizosphere and endosphere) was explored using the last double-cropping rice. Repeated application of Si fertilizers as base manure had a long-lasting effect on reducing As concentrations in rice grains. Application of Si fertilizer at an adequate amount resulted in an extended in-situ remediation effect from endosphere to rhizosphere. The microbial diversity and richness in rhizosphere soil and endosphere were significantly impacted by Si fertilization, the effects depending on application doses and prolonged seasons. Si fertilization can immobilize As in the root or rhizosphere, and Fe concentrations and the As- and Fe-transforming microorganisms (i.e. Geobacteraceae) are the determinants of As uptake in rice. We recommend more extensive supplementation of Si fertilizer at a higher rate to decrease grain As concentration for in-situ remediation. This study sheds light on the microbial-mediated mechanism underlying Si fertilization effect on decreased As uptake in paddy fields.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Fertilization , Fertilizers/analysis , Seasons , Silicon , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...