Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Food Chem X ; 22: 101432, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38764783

ABSTRACT

Aroma plays a pivotal role in the quality of black tea. However, the acceptability of black tea is greatly limited by the green off-flavor (GOF) resulting from the inappropriate processing control. In this study, the key odorants causing GOF were investigated by volatolomics, and their dynamic changes and formation pathways were in-depth understood. Significant alterations in volatile metabolites were observed in the withering stage. A total of 14 key odorants were identified as contributors to GOF, including 2-methylpropanal, 3-methylbutanal, 1-hexanol, nonanal, (E, E)-2,4-heptadienal, benzaldehyde, linalool, (E, E)-3,5-octadiene-2-one, ß-cyclocitral, phenylacetaldehyde, (E, E)-2,4-nonadienal, methyl salicylate, geraniol, and ß-ionone. Among them, (E, E)-2,4-heptadienal (OAV = 3913), characterized by fatty, green, and oily aromas, was considered to be the most important contributor causing GOF. Moreover, it was found that lipid degradation served as the primary metabolic pathway for GOF. This study provides a theoretical foundation for off-flavor control and quality improvement of black tea.

2.
Food Chem ; 453: 139628, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761731

ABSTRACT

Umami taste is a key criteria of green tea quality evaluation. The aim of this study was to comprehensively explore the key umami taste contributors in Longjing tea. The taste and molecular profiles of 36 Longjing green tea infusions were characterized by sensory quantitative descriptive analysis and LC-MS based metabolomics, respectively. By uni-/multi-variate statistical analysis, 84 differential compounds were screened among tea infusions with varied umami perceptions. Among them, 17 substances were identified as candidate umami-enhancing compounds, which showed significant positive correlations with umami intensities. Their natural concentrations were accurately quantified, and their umami taste-modifying effects were further investigated by taste addition into glutamic acid solution. Glutamic acid, aspartic acid, glutamine, theanine, phenylalanine, histidine, theogallin, galloylglucose, 1,2,6-trigalloylglucose significantly enhanced the umami taste. This study uncovered for the first time of some bitter amino acids and galloylglucose homologous series as important umami-enhancers, which provided a novel perspective into the tea taste.


Subject(s)
Camellia sinensis , Metabolomics , Taste , Tea , Tea/chemistry , Humans , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Male , Adult , Mass Spectrometry , Female , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/analysis , Chromatography, High Pressure Liquid
3.
Prev Med ; 184: 107997, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729527

ABSTRACT

OBJECTIVES: Public Health officials are often challenged to effectively allocate limited resources. Social determinants of health (SDOH) may cluster in areas to cause unique profiles related to various adverse life events. The authors use the framework of unintended teen pregnancies to illustrate how to identify the most vulnerable neighborhoods. METHODS: This study used data from the U.S. American Community Survey, Princeton Eviction Lab, and Connecticut Office of Vital Records. Census tracts are small statistical subdivisions of a county. Latent class analysis (LCA) was employed to separate the 832 Connecticut census tracts into four distinct latent classes based on SDOH, and GIS mapping was utilized to visualize the distribution of the most vulnerable neighborhoods. GEE Poisson regression model was used to assess whether latent classes were related to the outcome. Data were analyzed in May 2021. RESULTS: LCA's results showed that class 1 (non-minority non-disadvantaged tracts) had the least diversity and lowest poverty of the four classes. Compared to class 1, class 2 (minority non-disadvantaged tracts) had more households with no health insurance and with single parents; and class 3 (non-minority disadvantaged tracts) had more households with no vehicle available, that had moved from another place in the past year, were low income, and living in renter-occupied housing. Class 4 (minority disadvantaged tracts) had the lowest socioeconomic characteristics. CONCLUSIONS: LCA can identify unique profiles for neighborhoods vulnerable to adverse events, setting up the potential for differential intervention strategies for communities with varying risk profiles. Our approach may be generalizable to other areas or other programs. KEY MESSAGES: What is already known on this topic Public health practitioners struggle to develop interventions that are universally effective. The teen birth rates vary tremendously by race and ethnicity. Unplanned teen pregnancy rates are related to multiple social determinants and behaviors. Latent class analysis has been applied successfully to address public health problems. What this study adds While it is the pregnancy that is not planned rather than the birth, access to pregnancy intention data is not available resulting in a dependency on teen birth data for developing public health strategies. Using teen birth rates to identify at-risk neighborhoods will not directly represent the teens at risk for pregnancy but rather those who delivered a live birth. Since teen birth rates often fluctuate due to small numbers, especially for small neighborhoods, LCA may avoid some of the limitations associated with direct rate comparisons. The authors illustrate how practitioners can use publicly available SDOH from the Census Bureau to identify distinct SDOH profiles for teen births at the census tract level. How this study might affect research, practice or policy These profiles of classes that are at heightened risk potentially can be used to tailor intervention plans for reducing unintended teen pregnancy. The approach may be adapted to other programs and other states to prioritize the allocation of limited resources.


Subject(s)
Geographic Information Systems , Latent Class Analysis , Social Determinants of Health , Humans , Female , Adolescent , Pregnancy , Connecticut , Neighborhood Characteristics , Vulnerable Populations/statistics & numerical data , Residence Characteristics/statistics & numerical data , Pregnancy in Adolescence/statistics & numerical data , United States , Socioeconomic Factors
4.
Food Res Int ; 187: 114330, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763633

ABSTRACT

Processing technology plays a crucial role in the formation of tea aroma. The dynamic variations in volatile metabolites across different processing stages of fresh scent green tea (FSGT) were meticulously tracked utilizing advanced analytical techniques such as GC-E-Nose, GC-MS, and GC × GC-TOFMS. A total of 244 volatile metabolites were identified by GC-MS and GC × GC-TOFMS, among which 37 volatile compounds were concurrently detected by both methods. Spreading and fixation stages were deemed as pivotal processes for shaping the volatile profiles in FSGT. Notably, linalool, heptanal, 2-pentylfuran, nonanal, ß-myrcene, hexanal, 2-heptanone, pentanal, 1-octen-3-ol, and 1-octanol were highlighted as primary contributors to the aroma profiles of FSGT by combining odor activity value assessment. Furthermore, lipid degradation and glycoside hydrolysis were the main pathways for aroma formation of FSGT. The results not only elucidate the intricate variations in volatile metabolites but also offer valuable insights into enhancing the processing techniques for improved aroma quality of green tea.


Subject(s)
Food Handling , Gas Chromatography-Mass Spectrometry , Odorants , Tea , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Tea/chemistry , Food Handling/methods , Electronic Nose , Aldehydes/analysis , Aldehydes/metabolism , Acyclic Monoterpenes/metabolism , Acyclic Monoterpenes/analysis , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Ketones/analysis , Ketones/metabolism , Octanols
5.
Foods ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38472841

ABSTRACT

Aroma is an indispensable factor that substantially impacts the quality assessment of black tea. This study aims to uncover the dynamic alterations in the sweet and floral aroma black tea (SFABT) throughout various manufacturing stages using a comprehensive analytical approach integrating gas chromatography electronic nose, gas chromatography-ion mobility spectrometry (GC-IMS), and gas chromatography-mass spectrometry (GC-MS). Notable alterations in volatile components were discerned during processing, predominantly during the rolling stage. A total of 59 typical volatile compounds were identified through GC-IMS, whereas 106 volatile components were recognized via GC-MS throughout the entire manufacturing process. Among them, 14 volatile compounds, such as linalool, ß-ionone, dimethyl sulfide, and 1-octen-3-ol, stood out as characteristic components responsible for SFABT with relative odor activity values exceeding one. This study serves as an invaluable theoretical platform for strategic controllable processing of superior-quality black tea.

6.
Food Res Int ; 178: 113876, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309897

ABSTRACT

The species and contents of ɑ-dicarbonyls in commercial black tea were examined, along with the effects of the manufacturing process and drying temperature on the formation of ɑ-dicarbonyls. Ten ɑ-dicarbonyls were quantified in commercial and in-process black tea samples by using UPLC-MS/MS and their derived quinoxalines. The ɑ-dicarbonyls content in commercial black tea decreased significantly (p < 0.05) in the following order: 3-deoxyglucosone > glucosone > 3-deoxypentosone = threosone > galactosone ≥ methylglyoxal = glyoxal ≥ 3-deoxygalactosone = 3-deoxythreosone = diacetyl. Except for 3-deoxyglucosone and 3-deoxygalactosone, a further eight ɑ-dicarbonyls were identified in all manufacturing steps of black tea. Except for the drying step, the rolling and fermenting played important roles in the formation of ɑ-dicarbonyls. The total contents of ɑ-dicarbonyls in black tea infusion ranged from 16.48 to 75.32 µg/g based on our detected ten ɑ-dicarbonyls.


Subject(s)
Camellia sinensis , Tea , Maillard Reaction , Chromatography, Liquid , Tandem Mass Spectrometry , Glyoxal/analysis
7.
Food Chem ; 439: 138154, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38071844

ABSTRACT

Drying temperature (DT) considerably affects the flavor of black tea (BT); however, its influence on non-volatile metabolites (NVMs) and their correlations remain unclear. In this study, an objective quantification technique and widely targeted metabolomics were applied to explore the effects of DT (130 °C, 110 °C, 90 °C, and 70 °C) on BT flavor and NVMs conversion. BT with a DT of 90 °C presented the highest umami, sweetness, overall taste, and brightness color values. Using the weighted gene co-expression network and multiple factor analysis, 455 sensory trait-related NVMs were explored across six key modules. Moreover, 169 differential NVMs were screened, and flavonoids, phenolic acids, amino acids, organic acids, and lipids were identified as key differential NVMs affecting the taste and color attributes of BT in response to DT. These findings enrich the BT processing theory and offer technical support for the precise and targeted processing of high-quality BT.


Subject(s)
Camellia sinensis , Tea , Tea/chemistry , Temperature , Camellia sinensis/chemistry , Flavonoids/analysis , Metabolomics/methods
8.
Food Chem X ; 20: 100989, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144743

ABSTRACT

Rolling represents an essential stage in congou black tea processing. However, the influence of rolling pressure on tea flavor and non-volatile compounds remains unclear. Herein, a combination of untargeted metabolomics, tea pigments quantification, E-tongue, colorimeter and sensory evaluation was used to evaluate the effect of rolling pressure on black tea quality. As the rolling pressure increased, theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs) significantly elevated. The tea metabolic profiles fluctuated and 47 metabolites were identified as key differential metabolites including flavan-3-ols, flavonol/flavone glycosides, phenolic acids, amino acids. These substances altered possibly due to the variations in enzymatic oxidation of tea phenolics and amino acids. Overall, black tea with moderate rolling pressure presented higher sweetness, lower bitterness, and higher quality index (10 TFs + TRs)/TBs. The results were verified by a validation batch. This study provided new insights into the regulation of rolling pressure and a guidance for black tea processing.

9.
Food Chem X ; 20: 101007, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144830

ABSTRACT

Shaking is an innovative technology employed in black tea processing to enhance flavor. However, the effects of shaking on the evolutionary mechanisms of volatile metabolites (VMs) remain unclear. In this study, we compared the effects of a shaking-withering method with those of traditional withering on the flavor and VMs transformation of black tea. The results showed that black tea treated with shaking exhibited excellent quality with floral and fruity aroma. Based on gas chromatography-tandem mass spectrometry, 128 VMs (eight categories) were detected. Combining variable importance projection with odor activity value analysis, eight key differential VMs were identified. Shaking could promote the oxidative degradation of fatty acids and carotenoids and modulate the biosynthesis of terpenoids to facilitate the formation of floral/fruity VMs (such as (Z)-hexanoic acid-3-hexenyl ester, ethyl hexanoate, trans-ß-ionone, and decanal). Our findings provide theoretical guidance for the production of high-quality black tea with floral and fruity aromas.

10.
Food Chem X ; 19: 100844, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780241

ABSTRACT

Despite the importance of fixation in determining green tea quality, its role in reducing the bitter and astringent taste of this beverage remains largely unknown. Herein, an electromagnetic roller-hot-air-steam triple-coupled fixation (ERHSF) device was developed, and its operating parameters were optimized (steam volume: 20 kg/h; hot-air temperature: 90 °C; hot-air blower speed: 1200 r/min). Compared with conventional fixation treated samples, the ratio of tea polyphenols to free amino acids and ester-catechins to simple-catechins in ERHSF-treated samples was reduced by 11.0% and 3.2%, reducing bitterness and astringency of green tea; amino acids, soluble sugars, and chlorophyll contents were significantly increased, enhancing the freshness, sweetness, and greenness; the color indexes, such as L/L* value of brightness and -a/-a* value of greenness, were also improved, and ERHSF-treated samples had the highest sensory scores. These results provided theoretical support and technical guidance for precise quality improvement of summer-autumn green tea.

11.
Heliyon ; 9(6): e17305, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37426805

ABSTRACT

In this study, four kinds of Longjing tea, the famous flat green tea and the protected geographical indication product in China, were used to explore the quality difference of the same green tea due to the cultivar, geographic origin, and storage time under the premise of consistent picking conditions and processing technology using the widely targeted metabolomics. Results showed that 483 flavonoid metabolites with 10 subgroups of flavonoids were screened and 118 differential flavonoid metabolites were identified. The number and subgroups of differential flavonoid metabolites produced by different cultivars of Longjing tea were the largest, followed by storage time, and third by the geographic origin. Glycosidification and methylation or methoxylation were the main structural modifications of differential flavonoid metabolites. This study has enriched the understanding of the effects of the cultivar, the geographic origin, and the storage time on the flavonoid metabolic profiles of Longjing tea, and provided worthy information for the traceability of green tea.

12.
Food Chem X ; 18: 100693, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37397226

ABSTRACT

Storage time is one of the important factors affecting the aroma quality of Pu-erh tea. In this study, the dynamic changes of volatile profiles of Pu-erh teas stored for different years were investigated by combining gas chromatography electronic nose (GC-E-Nose), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-ion mobility spectrometry (GC-IMS). GC-E-Nose combined with partial least squares-discriminant analysis (PLS-DA) realized the rapid discrimination of Pu-erh tea with different storage time (R2Y = 0.992, Q2 = 0.968). There were 43 and 91 volatile compounds identified by GC-MS and GC-IMS, respectively. A satisfactory discrimination (R2Y = 0.991, and Q2 = 0.966) was achieved by using PLS-DA based on the volatile fingerprints of GC-IMS. Moreover, according to the multivariate analysis of VIP > 1.2 and univariate analysis of p < 0.05, 9 volatile components such as linalool and (E)-2-hexenal were selected as key variables to distinguish Pu-erh teas with different storage years. The results provide theoretical support for the quality control of Pu-erh tea.

13.
Food Chem ; 427: 136641, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37393635

ABSTRACT

To characterize the key odorants of floral aroma green tea (FAGT) and reveal its dynamic evolution during processing, the volatile metabolites in FAGT during the whole processing were analyzed by integrated volatolomics techniques, relative odor activity value (rOAV), aroma recombination, and multivariate statistical analysis. The volatile profiles undergone significant changes during processing, especially in the withering and fixation stages. A total of 184 volatile compounds were identified (∼53.26% by GC-MS). Among them, 7 volatiles with rOAV > 1 were identified as characteristic odorants of FAGT, and most of these compounds reached the highest in withering stage. According to the formation pathways, these key odorants could be divided into four categories: fatty acid-derived volatiles, glycoside-derived volatiles, amino acid-derived volatiles, and carotenoid-derived volatiles. Our study provides a comprehensive strategy to elucidate changes in volatile profiles during processing and lays a theoretical foundation for the targeted processing of high-quality green tea.


Subject(s)
Tea , Volatile Organic Compounds , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods , Electronic Nose , Volatile Organic Compounds/analysis
14.
Front Nutr ; 10: 1029745, 2023.
Article in English | MEDLINE | ID: mdl-36937343

ABSTRACT

Chayote (Sechium edulel) fruits are rich in flavonoids, folate, and low-calorie food. However, studies about the flavonoids and the corresponding regulatory mechanism of flavonoid synthesis in chayote fruits was still unclear. In present study, an integrated transcriptome and metabolite analysis of chayote fruits at three different storage stages were conducted to explore the flavonoid compositions and gene expression associated with flavonoid synthesis. Through the UPLC-MS/MS analysis, a total of 57 flavonoid compounds were detected. Of these, 42 flavonoid glycosides were significantly differential accumulation in chayote fruits at three different storage stages. Many genes associated with flavonoid synthesis were differentially expressed in chayote fruits at three different storage stages through RNA-seq analysis, including structural genes and some TFs. There was a high correlation between RNA-seq analysis and metabolite profiling, and the expression level of candidate genes in the flavonoid synthesis pathway were consistent with the dynamic changes of flavonoids. In addition, one R2R3-MYB transcription factor, FSG0057100, was defined as the critical regulatory gene of flavonoid synthesis. Furthermore, exogenous application of phenylalanine increased the total content of flavonoids and promoted some flavonoid biosynthesis-related gene expression in chayote fruits. The above results not only make us better understand the molecular mechanism of flavonoid synthesis in chayote fruits, but also contribute to the promotion and application of chayote products.

15.
Front Nutr ; 10: 1104926, 2023.
Article in English | MEDLINE | ID: mdl-36998915

ABSTRACT

Withering is an important processing stage in green tea, which contributes to the tea flavor quality. The aim of this work was to comprehensively investigate the changes of chemical features and flavor attributes in Longjing green teas produced with five different withering degrees (moisture content of 75.05, 72.53, 70.07, 68.00, and 64.78%, w.b.). Combined with human sensory evaluation, electronic tongue and chromatic differences analysis, an assessment of the relationship between the withering degree and the sensory quality of Longjing tea was obtained. By using a non-targeted metabolomics approach, 69 significantly differential metabolites were screened. As the withering degree increased, most free amino acids and catechin dimers were increased, largely attributed to the hydrolysis of proteins and catechin oxidative polymerization, respectively. The contents of organic acids as well as phenolic acids and derivatives were reduced. Interestingly, flavone C-glycosides decreased overall while flavonol O-glycosides increased. The correlation analysis revealed that metabolites such as theasinensin F, theasinensin B, theaflavin, theaflavin-3,3'-gallate, theaflavin-3'-gallate, malic acid, succinic acid, quinic acid, theanine glucoside and galloylglucose had a greater influence on the taste and color of tea infusion (|r| > 0.6, p < 0.05). Overall, an appropriate withering degree at a moisture content of around 70% is more favorable to enhance the Longjing tea quality. These results may enhance the understanding of green tea flavor chemistry associated with withering and provide a theoretical basis for green tea processing.

16.
Food Chem ; 404(Pt B): 134665, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36283306

ABSTRACT

Ripened Pu-erh tea (RPT) is a unique microbial fermented tea. Herein, we investigated the lipid composition of RPT and its metabolic changes during pile fermentation, by nontargeted lipidomics profiling and quantitative analysis using liquid chromatography-mass spectrometry (LC-MS). A total of 485 individual lipid species covering 26 subclasses were detected, and fatty acid ester of hydroxy fatty acid (FAHFA) was detected in tea for the first time. Among them, 362 species were significantly altered during fermentation. Chlorophylls decomposition, phospholipids degradation (especially phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine), formation of free fatty acid (FFA) (especially FFA18:3, FFA18:2), and formation of FAHFA, were annotated as the key pathways. Particularly, FAHFAs were undetected in raw tea and gradually enriched to 227.0 ± 9.6 nmol/g after fermentation (p < 0.001), which could serve as marker compounds of RPT associated with microbial fermentation. This study will advance understanding the lipid metabolic fate in microbial fermentation and its role in RPT quality. Chemical compounds studied in this article: Linolenic acid (PubChem CID: 5280934); Linoleic acid (PubChem CID: 5280450); Oleic acid (PubChem CID: 445639); PS(22:0/18:2) (PubChem CID: 52925820); PS(20:0/18:3) (PubChem CID: 52925629); Pheophytin a (PubChem CID: 135398712); Pheophorbide a (PubChem CID: 253193).


Subject(s)
Lipidomics , Tea , Fermentation , Chromatography, Liquid , Tea/chemistry , Tandem Mass Spectrometry , Biomarkers , Lipids , Fatty Acids
17.
Food Res Int ; 162(Pt B): 112099, 2022 12.
Article in English | MEDLINE | ID: mdl-36461339

ABSTRACT

Strip green tea (SGT) is widely distributed in China owing to its unique appearance and aroma but the evolution and formation mechanisms of volatile metabolites (VMs) during SGT processing, and especially in the unique process of rubbing, remain unclear. In this study, based on untargeted metabolomics, 217 VMs (8 categories) were identified, and fixation and rubbing processes were found to be key for SGT aroma formation. Moreover, targeted metabolomics was applied to obtain 38 differential VMs and their related substances, of which fatty acid-derived volatiles (14 VMs) and glycoside-derived volatiles (8 VMs) showed significant contributions to SGT aroma, and their derivation laws during SGT manufacturing were clarified. Furthermore, the effect of rubbing degree on volatile metabolite formation was explored, and 11 key differential VMs were screened by variable importance in projection, and odor activity value analyses. Appropriate rubbing promoted the loss of grassy VMs (such as 1-octanol and 2-pentyl-furan) and enrichment of floral/fruity VMs (such as trans-ß-ionone, nonanal, geraniol, citral, (Z)-3,7-dimethyl-2,6-octadien-1-ol, and (Z)-hexanoic acid, 3-hexenyl ester). Our study not only enriches the chemical theory of green tea processing but also provides technical support for the precision directional processing of high-quality SGT.


Subject(s)
Metabolomics , Tea , 1-Octanol , China , Commerce
18.
Foods ; 11(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36141056

ABSTRACT

Fixation is the most critical step in the green tea process. Hence, this study developed a rapid and accurate moisture content detection for the green tea fixation process based on near-infrared spectroscopy and computer vision. Specifically, we created a quantitative moisture content prediction model appropriate for the processing of green tea fixation. First, we collected spectrum and image information of green tea fixation leaves, utilizing near-infrared spectroscopy and computer vision. Then, we applied the partial least squares regression (PLSR), support vector regression (SVR), Elman neural network (ENN), and Elman neural network based on whale optimization algorithm (WOA-ENN) methods to build the prediction models for single data (data from a single sensor) and mid-level data fusion, respectively. The results revealed that the mid-level data fusion strategy combined with the WOA-ENN model attained the best effect. Namely, the prediction set correlation coefficient (Rp) was 0.9984, the root mean square error of prediction (RMSEP) was 0.0090, and the relative percent deviation (RPD) was 17.9294, highlighting the model's excellent predictive performance. Thus, this study identified the feasibility of predicting the moisture content in the process of green tea fixation by miniaturized near-infrared spectroscopy. Moreover, in establishing the model, the whale optimization algorithm was used to overcome the defect whereby the Elman neural network falls into the local optimum. In general, this study provides technical support for rapid and accurate moisture content detection in green tea fixation.

19.
Foods ; 11(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35804663

ABSTRACT

Yunnan Congou black tea (YCBT) is a typical black tea in China, and is rich in theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). However, the influence of the fermentation temperature and time on the liquor and appearance color and the correlation between the tea pigments and its color attributes remain unclear. We investigated the effects of the fermentation temperature and time on the color attributes and tea pigments of YCBT. A low fermentation temperature was beneficial to maintain a bright orange-red liquor color and promote the accumulation of TFs and TRs. In contrast, a high temperature gave the liquor a glossy appearance and was beneficial for the formation of TBs. A correlation analysis showed that the 10TFRB index best represented the contribution of tea pigments to the quality of black tea. Moreover, TRs and TBs content prediction models were established based on the liquor L and H values, where the former value can be used as an important index to judge the fermentation process. This study will further enrich the theory of black tea processing chemistry and provide technical support for the precise and directional production of black tea.

20.
Food Chem X ; 14: 100354, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35693454

ABSTRACT

Second-drying is a key process of green tea manufacturing, however, hitherto the effect of second-drying methods on green tea quality has not been assessed. In this study, we compared the effect of three heat transfer drying methods (heat radiation, heat convection, and heat conduction) on green tea quality. Gas chromatography-tandem dual mass spectrometry was used to detect volatile compounds, while absolute quantitative methods were used to detect the non-volatile ones. We identified 45 non-volatile metabolites, 101 volatile metabolites, and 15 objective flavor indicators. Seventeen differential non-volatiles and 8 differential volatiles were screened. Microwave second-drying in heat radiation was the optimal method for green tea flavor, as it can promote the retention of chlorophyll, the degradation of flavonoid glycosides, and the enrichment of amino acids, soluble sugars, nonanal, trans-ß-ionone, linalool, and jasmone. The results provide a theoretical basis and technical guidance for the precise and directional processing of high-quality green tea.

SELECTION OF CITATIONS
SEARCH DETAIL
...