Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(10)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37995361

ABSTRACT

In this study, platinum (Pt) and tungsten (W), two materials with dissimilar coefficients of thermal expansion (CTE) and work functions (WF), are used as the top electrode (TE) and the bottom electrode (BE) in metal/ferroelectric/metal (MFM) structures to explore the ferroelectricity of hafnium zirconium oxide (HZO) with a thickness less than 10 nm. The electrical measurements indicate that a higher CTE mismatch between HZO and TE/BE is beneficial for enhancing the ferroelectric properties of nanoscale HZO thin films. The different WFs of TE and BE generate a built-in electric field in the HZO layer, leading to shifts in the hysteresis loops and the capacitance-voltage characteristics. The structural characterizations reveal that the preferred formation of the orthorhombic phase in HZO is dominated by the W BE. The device in which W is used as the TE and BE (the W/HZO/W MFM structure) presents the optimal ferroelectric performance of a high remanent polarization (2Pr= 55.2µC cm-2). The presence of tungsten oxide (WOx) at the W/HZO interfaces, as revealed by high-resolution transmission microscopy, is also responsible for the enhancement of ferroelectric properties. This study demonstrates the significant effects of different CTEs and WFs of TE and BE on the properties of ferroelectric HZO thin films.

2.
Adv Sci (Weinh) ; 10(32): e2302770, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37759405

ABSTRACT

Atomic layer engineering is investigated to tailor the morphotropic phase boundary (MPB) between antiferroelectric, ferroelectric, and paraelectric phases. By increasing the HfO2 seeding layer with only 2 monolayers, the overlying ZrO2 layer experiences the dramatic phase transition across the MPB. Conspicuous ferroelectric properties including record-high remanent polarization (2Pr ≈ 60 µC cm-2 ), wake-up-free operation, and high compatibility with advanced semiconductor technology nodes, are achieved in the sub-6 nm thin film. The prominent antiferroelectric to ferroelectric phase transformation is ascribed to the in-plane tensile stress introduced into ZrO2 by the HfO2 seeding layer. Based on the high-resolution and high-contrast images of surface grains extracted precisely by helium ion microscopy, the evolution of the MPB between tetragonal, orthorhombic, and monoclinic phases with grain size is demonstrated for the first time. The result indicates that a decrease in the average grain size drives the crystallization from the tetragonal to polar orthorhombic phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...