Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 128(16): 3833-3843, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38603528

ABSTRACT

The construction of the stratum corneum (SC) is crucial to the problems of transdermal drug delivery. SC consists of the keratinocyte layers and the lipid matrix surrounding it. Among them, the lipid matrix is the barrier for many exogenous molecules, mainly composed of ceramides (CERs), free fatty acids (FFA), and cholesterol (CHOL). In this work, we developed single-component (CERs, CER-NS, and CER-EOS) and six three-component models, and each model was simulated by using the GROMOS-54A7 force field. Short-period phase (SPP) and long-period phase (LPP) systems were established separately, and area per lipid (APL), thickness, order of carbon chain (SCD), and density distribution were analyzed. The transition of CER-NS and CER-EOS in LPP was observed. The results of hydrogen bonds in the lipid systems indicated that a strong hydrogen-bond network was formed between the skin-lipid bilayers. Umbrella sampling method simulations were performed to calculate the free energy change of ethanol moving into the skin-lipid bilayer. The results revealed that ethanol molecules pulled some water molecules into the membrane when they passed through SPP-1. Our findings provided some insights and models of the stratum corneum that could be used for the subsequent mechanism of macromolecule permeation through membranes in drugs, cosmetics, and so on.


Subject(s)
Ceramides , Lipid Bilayers , Molecular Dynamics Simulation , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Ceramides/chemistry , Ceramides/metabolism , Hydrogen Bonding , Cholesterol/chemistry , Cholesterol/metabolism , Epidermis/metabolism , Epidermis/chemistry , Ethanol/chemistry , Fatty Acids, Nonesterified/chemistry , Fatty Acids, Nonesterified/metabolism , Skin/metabolism , Skin/chemistry , Humans
2.
Water Res ; 236: 119947, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37084575

ABSTRACT

As a class of synthetic persistent organic pollutants, contamination of Per-and poly-fluoroalkyl substances (PFAS) in drinking water has attracted widespread concern. Aeration has been confirmed to enhance the removal of PFAS in drinking water by activated carbon (AC). However, the contribution of the air-water interface in removing PFAS is not yet to be fully understood at the molecular level. In this work, molecular dynamics (MD) simulations were employed to investigate the role of nanobubble in removing PFAS in the aqueous environment. The result suggests that the free energies of the air-water interface are about 3-7 kcal mol-1 lower than that of the bulk water region, indicating that the transformation of PFAS from the water phase into the air-water interface is favorable from the viewpoint of thermodynamics. The interface-water partition coefficients (Psur/wat) of PFAS are in the order of PFOS > PFOA > PFHxS > PFBS. On the air-water-AC three-phase interface, PFBS can not only move along the interface region but also leave the interface region into water phase, while PFOS tended to move along the interface region until it was captured by AC. Finally, the ΔGwater-interface quantitative structure-activity relationships (QSAR) models were developed to predict the removal efficiencies of PFAS enhanced by aeration in aquatic systems. The proposed mechanism promotes the understanding of the contribution of air-water interface in removing PFAS from drinking water by activated carbon.


Subject(s)
Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Adsorption , Charcoal , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...