Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
Cell Chem Biol ; 31(6): 1203-1218.e17, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906111

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the biosynthesis of nicotinamide adenine dinucleotide (NAD+), making it a potential target for cancer therapy. Two challenges hinder its translation in the clinic: targeting the extracellular form of NAMPT (eNAMPT) remains insufficient, and side effects are observed in normal tissues. We previously utilized proteolysis-targeting chimera (PROTAC) to develop two compounds capable of simultaneously degrading iNAMPT and eNAMPT. Unfortunately, the pharmacokinetic properties were inadequate, and toxicities similar to those associated with traditional inhibitors arose. We have developed a next-generation PROTAC molecule 632005 to address these challenges, demonstrating exceptional target selectivity and bioavailability, improved in vivo exposure, extended half-life, and reduced clearance rate. When combined with nicotinic acid, 632005 exhibits safety and robust efficacy in treating NAPRT-deficient pan-cancers, including xenograft models with hematologic malignancy and prostate cancer and patient-derived xenograft (PDX) models with liver cancer. Our findings provide clinical references for patient selection and treatment strategies involving NAMPT-targeting PROTACs.


Subject(s)
Antineoplastic Agents , Niacin , Nicotinamide Phosphoribosyltransferase , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Humans , Animals , Niacin/chemistry , Niacin/pharmacology , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Male , Proteolysis/drug effects , Cell Proliferation/drug effects , Mice, Nude , Cytokines/metabolism , Cell Line, Tumor , Female , Xenograft Model Antitumor Assays , Molecular Structure , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
2.
Int J Biochem Cell Biol ; 172: 106585, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734232

ABSTRACT

Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid ß-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid ß-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid ß-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid ß-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids ß-oxidation.


Subject(s)
Enoyl-CoA Hydratase , Hepatocytes , Lipid Metabolism , Liver , Mice, Inbred C57BL , Oxidation-Reduction , Peroxisomes , Tamoxifen , Animals , Tamoxifen/pharmacology , Mice , Lipid Metabolism/drug effects , Liver/metabolism , Liver/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Oxidation-Reduction/drug effects , Male , Peroxisomes/metabolism , Peroxisomes/drug effects , Enoyl-CoA Hydratase/metabolism , Enoyl-CoA Hydratase/genetics , Up-Regulation/drug effects , Diet, High-Fat/adverse effects , Female , Fatty Acids/metabolism
3.
Br J Cancer ; 131(1): 77-89, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796598

ABSTRACT

BACKGROUND: Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS: Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS: We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS: Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.


Subject(s)
Alternative Splicing , Carcinogenesis , Carcinoma, Hepatocellular , Liver Neoplasms , Receptor, Fibroblast Growth Factor, Type 4 , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Animals , Mice , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Prognosis , Mice, Nude
4.
Food Funct ; 15(5): 2628-2644, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38358014

ABSTRACT

As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Butyric Acid/pharmacology , Butyric Acid/metabolism , AMP-Activated Protein Kinases/metabolism , Tight Junctions/metabolism , Epithelial Cells/metabolism , Fibrosis , Diabetes Mellitus/metabolism
5.
Food Funct ; 15(5): 2772, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38358379

ABSTRACT

Removal of Expression of Concern for 'Sodium butyrate ameliorated diabetic nephropathy-associated tubulointerstitial inflammation by modulating tight junction of renal tubular epithelial cells' by Tingting Yang et al., Food Funct., 2022, Accepted Manuscript, https://doi.org/10.1039/D2FO00940D.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Butyric Acid/metabolism , Tight Junctions/metabolism , Epithelial Cells/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Diabetes Mellitus/metabolism
6.
J Pharm Anal ; 14(1): 52-68, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38352949

ABSTRACT

The occurrence of benign prostate hyperplasia (BPH) was related to disrupted sex steroid hormones, and metformin (Met) had a clinical response to sex steroid hormone-related gynaecological disease. However, whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear. Here, our clinical study showed that along with prostatic epithelial cell (PEC) proliferation, sex steroid hormones were dysregulated in the serum and prostate of BPH patients. As the major contributor to dysregulated sex steroid hormones, elevated dihydrotestosterone (DHT) had a significant positive relationship with the clinical characteristics of BPH patients. Activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor (AR)-mediated Yes-associated protein (YAP1)-TEA domain transcription factor (TEAD4) heterodimers. Met's anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells. Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.

7.
Ecotoxicol Environ Saf ; 272: 116072, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38342011

ABSTRACT

Triptolide (TP) is the major bioactive component of traditional Chinese medicine Tripterygium wilfordii Hook. F., a traditional Chinese medicinal plant categorized within the Tripterygium genus of the Celastraceae family. It is recognized for its therapeutic potential in addressing a multitude of diseases. Nonetheless, TP is known to exhibit multi-organ toxicity, notably hepatotoxicity, which poses a significant concern for the well-being of patients undergoing treatment. The precise mechanisms responsible for TP-induced hepatotoxicity remain unresolved. In our previous investigation, it was determined that TP induces heightened hepatic responsiveness to exogenous lipopolysaccharide (LPS). Additionally, natural killer (NK) cells were identified as a crucial effector responsible for mediating hepatocellular damage in this context. However, associated activating receptors and the underlying mechanisms governing NK cell represented innate lymphoid cell (ILC) activation remained subjects of inquiry and were not yet investigated. Herein, activating receptor Killer cell lectin like receptor K1 (NKG2D) of group 1 ILCs was specifically upregulated in TP- and LPS-induced acute liver failure (ALF), and in vivo blockade of NKG2D significantly reduced group 1 ILC mediated cytotoxicity and mitigated TP- and LPS-induced ALF. NKG2D ligand UL16-binding protein-like transcript 1 (MULT-1) was found upregulated in liver resident macrophages (LRMs) after TP administration, and LRMs did exhibit NK cell activating effect. Furthermore, M1 polarization of LRMs cells was observed, along with an elevation in intracellular tumor necrosis factor (TNF)-α levels. In vivo neutralization of TNF-α significantly alleviated TP- and LPS-induced ALF. In conclusion, the collaborative role of group 1 ILCs and LRMs in mediating hepatotoxicity was confirmed in TP- and LPS-induced ALF. TP-induced MULT-1 expression in LRMs was the crucial mechanism in the activation of group 1 ILCs via MULT-1-NKG2D signal upon LPS stimulation, emphasizing the importance of infection control after TP administration.


Subject(s)
Chemical and Drug Induced Liver Injury , Diterpenes , Phenanthrenes , Animals , Humans , Mice , NK Cell Lectin-Like Receptor Subfamily K , Lipopolysaccharides/toxicity , Immunity, Innate , Phenanthrenes/toxicity , Epoxy Compounds/toxicity , Killer Cells, Natural , Macrophages , Chemical and Drug Induced Liver Injury/etiology
8.
Chem Res Toxicol ; 37(2): 407-418, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38284557

ABSTRACT

Triptolide (TP) is a remarkable anti-inflammatory and immunosuppressive component separated from Tripterygium wilfordii Hook. F. However, its hepatotoxicity limits its application in the clinical. Our group has proposed a new perspective on TP-induced hepatotoxicity, in which TP enhances liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. Because the cause of the disease is unknown, there is currently no uniform treatment available. In this study, we attempted to determine whether the GSK-3ß-JNK pathway affects liver damage and its regulatory mechanism in response to TP/LPS costimulation. In addition, we investigated the effect of CsA or the GSK 3ß inhibitor CHIR-98014 on TP/LPS-induced hepatotoxicity. The results showed that the TP/LPS cotreatment mice exhibited obvious hepatotoxicity, as indicated by a remarkable increase in the serum ALT and AST levels, glycogen depletion, GSK 3ß-JNK upregulation, and increased apoptosis. Instead of the specific knockdown of JNK1, the specific knockdown of JNK2 had a protective effect. Additionally, 40 mg/kg of CsA and 30 mg/kg of CHIR-98014 might provide protection. In summary, CHIR-98014 could protect against TP/LPS- or TP/TNF-α-induced activation of the GSK 3ß-JNK pathway and mitochondria-dependent apoptosis, improving the indirect hepatotoxicity induced by TP.


Subject(s)
Aminopyridines , Chemical and Drug Induced Liver Injury , Diterpenes , Phenanthrenes , Pyrimidines , Mice , Animals , Glycogen Synthase Kinase 3 beta/pharmacology , Lipopolysaccharides/toxicity , Mitochondria , Apoptosis , Diterpenes/pharmacology , Phenanthrenes/pharmacology , Epoxy Compounds/toxicity , Chemical and Drug Induced Liver Injury/prevention & control
9.
Xenobiotica ; 54(2): 83-94, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38164702

ABSTRACT

Indirubin is the main component of the traditional Chinese medicine Indigo naturalis (IN), a potent agonist of aryl hydrocarbon receptors (AhRs). In China, IN is used to treat psoriasis and ulcerative colitis, and indirubin is used for the treatment of chronic myelogenous leukaemia. However, IN and indirubin have adverse reactions, such as abdominal pain, diarrhoea, and intussusception, and their specific mechanism is unclear.The purpose of our research was to determine the specific mechanism underlying the adverse effects of IN and indirubin. By tracking the modifications in guinea pigs after the intragastric administration of indirubin for 28 days.The results demonstrate that indirubin could accelerate bowel movements and decrease intestinal acetylcholinesterase (AchE) expression. Experiments with NCM460 cells revealed that indirubin significantly reduced the expression of AchE, and the AchE levels were increased after the silencing of AhR and re-exposure to indirubin.This study showed that the inhibition of AchE expression by indirubin plays a key role in the occurrence of adverse reactions to indirubin and that the underlying mechanism is related to AhR-mediated AchE downregulation.


Subject(s)
Acetylcholinesterase , Psoriasis , Guinea Pigs , Animals , Indoles/pharmacology , Indoles/metabolism , Indigo Carmine , Receptors, Aryl Hydrocarbon/metabolism
10.
Nat Struct Mol Biol ; 31(1): 54-67, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177672

ABSTRACT

THEMIS plays an indispensable role in T cells, but its mechanism of action has remained highly controversial. Using the systematic proximity labeling methodology PEPSI, we identify THEMIS as an uncharacterized substrate for the phosphatase SHP1. Saturated mutagenesis assays and mass spectrometry analysis reveal that phosphorylation of THEMIS at the evolutionally conserved Tyr34 residue is oppositely regulated by SHP1 and the kinase LCK. Similar to THEMIS-/- mice, THEMISY34F/Y34F knock-in mice show a significant decrease in CD4 thymocytes and mature CD4 T cells, but display normal thymic development and peripheral homeostasis of CD8 T cells. Mechanistically, the Tyr34 motif in THEMIS, when phosphorylated upon T cell antigen receptor activation, appears to act as an allosteric regulator, binding and stabilizing SHP1 in its active conformation, thus ensuring appropriate negative regulation of T cell antigen receptor signaling. However, cytokine signaling in CD8 T cells fails to elicit THEMIS Tyr34 phosphorylation, indicating both Tyr34 phosphorylation-dependent and phosphorylation-independent roles of THEMIS in controlling T cell maturation and expansion.


Subject(s)
Intercellular Signaling Peptides and Proteins , Thymocytes , Mice , Animals , Mice, Knockout , Thymocytes/metabolism , Receptors, Antigen, T-Cell , Signal Transduction
11.
Basic Clin Pharmacol Toxicol ; 134(3): 315-324, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38048777

ABSTRACT

Bile acids are synthesized from cholesterol in the liver. Dysregulation of bile acid homeostasis, characterized by excessive accumulation in the liver, gallbladder and blood, can lead to hepatocellular damage and the development of cholestatic liver disease. Nuclear receptors play a crucial role in the control of bile acid metabolism by efficiently regulating bile acid synthesis and transport in the liver. Among these receptors, peroxisome proliferator-activated receptor (PPAR), a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily, controls the expression of genes involved in adipogenesis, lipid metabolism, inflammation and glucose homeostasis and has emerged as a potential therapeutic target for the treatment of the metabolic syndrome in the past two decades. Emerging evidence suggests that PPAR activation holds promise as a therapeutic target for cholestatic liver disease, as it affects both bile acid production and transport. This review provides a comprehensive overview of recent advances in elucidating the role of PPAR in the regulation of bile acid metabolism, highlighting the current position of PPAR agonists in the treatment of primary biliary cholangitis. By summarizing the specific regulatory effects of PPAR on bile acids, this review contributes to the exploration of novel therapeutic strategies for cholestatic liver diseases.


Subject(s)
Liver Diseases , Peroxisome Proliferator-Activated Receptors , Humans , Peroxisome Proliferator-Activated Receptors/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Bile Acids and Salts , Lipid Metabolism
12.
Life Sci ; 337: 122355, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38104861

ABSTRACT

AIMS: Lithocholic acid (LCA)-induced cholestasis was accompanied by the occurrence of apoptosis, which indicated that anti-apoptosis was a therapeutic strategy for primary biliary cholangitis (PBC). As an agonist of (Farnesoid X receptor) FXR, we supposed that the hepatoprotection of Obeticholic acid (OCA) against cholestatic liver injury is related to anti-apoptosis beside of the bile acids (BAs) regulation. Herein, we explored the non-metabolic regulating mechanism of OCA for resisting LCA-induced cholestatic liver injury via anti-apoptosis. MAIN METHODS: LCA-induced cholestatic liver injury mice were pretreated with OCA to evaluate its hepatoprotective effect and mechanism. Biochemical and pathological indicators were used to detect the protective effect of OCA on LCA-induced cholestatic liver injury. The bile acids (BAs) profile in serum was detected by LC-MS/MS. Hepatocyte BAs metabolism, apoptosis and inflammation related genes and proteins alteration were investigated by biochemical determination. KEY FINDINGS: OCA improved LCA-induced cholestasis and hepatic apoptosis in mice. The BA profile in serum was changed by OCA mainly manifested as a reduction of taurine-conjugated bile acids, which was due to the upregulation of FXR-related bile acid efflux transporters bile salt export pump (BSEP), multi-drug resistant associated protein 2 (MRP2), MRP3 and multi-drug resistance 3 (MDR3). Apoptosis related proteins cleaved caspase-3, cleaved caspase-8 and cleaved PARP were obviously reduced after OCA treatment. SIGNIFICANCE: OCA improved LCA-induced cholestatic liver injury via FXR-induced exogenous cell apoptosis, which will provide new evidence for the application of OCA to ameliorate PBC in clinical.


Subject(s)
Cholestasis , Lithocholic Acid , Mice , Animals , Lithocholic Acid/adverse effects , Chromatography, Liquid , Tandem Mass Spectrometry , Liver/metabolism , Cholestasis/chemically induced , Cholestasis/complications , Cholestasis/drug therapy , Bile Acids and Salts/metabolism , Apoptosis
13.
Toxicol Lett ; 390: 25-32, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37944651

ABSTRACT

Triptolide (TP) is extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F. (TWHF). Its severe toxic side effects, especially hepatotoxicity, have limited the clinical application of TP-related drugs. In this study, we investigated the mechanism of the hepatotoxic effects of TP from the perspective that TP inhibited the expression of the pro-survival protein X-linked inhibitor of apoptosis protein (XIAP) and enhanced FasL-mediated apoptosis of hepatocytes. TP and CD95/Fas antibody (Jo-2) were administered by gavage to C57BL/6 mice for 7 consecutive days. After co-administration of TP and Jo-2, mouse livers showed large areas of necrosis and apoptosis and significantly increased Caspase-3 activity. KEGG pathway enrichment analysis indicated that TP may cause the development of liver injury through the apoptotic signaling pathway. Proteinprotein interaction networks showed that XIAP played an essential role in this process. TP reduced the protein expression of XIAP after combination treatment with Jo-2/FasL in vivo/in vitro. TP and FasL co-stimulation significantly increased microRNA-137 (miR-137) levels in AML12 cells, while inhibition of miR-137 expression induced a rebound in XIAP protein expression. In conclusion, TP presensitizes hepatocytes and enhances the sensitivity of hepatocytes to the Fas/FasL pathway by inhibiting the protein expression of XIAP, leading to hepatocyte apoptosis.


Subject(s)
MicroRNAs , X-Linked Inhibitor of Apoptosis Protein , Mice , Animals , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Mice, Inbred C57BL , Liver/metabolism , Hepatocytes , Apoptosis , MicroRNAs/metabolism
14.
Int Immunopharmacol ; 125(Pt A): 111150, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924700

ABSTRACT

Bile acid (BA) homeostasis throughout the enterohepatic circulation system is a guarantee of liver physiological functions. BA circulation disorders is one of the characteristic clinical manifestations of cholestasis, and have a closely relationship with intestinal barrier function, especially ileum. Here, our in vivo and in vitro studies showed that intestinal tight junctions (TJs) were disrupted by α-naphthylisothiocyanate (ANIT), which also down-regulated the protein expression of sphingosine-1-phosphate receptor 1 (S1PR1) in the top of villus of mice ileum. Activating S1PR1 by specific agonist SEW2871 could improve TJs via inhibiting ERK1/2/LKB1/AMPK signaling pathway in the ileum of ANIT-treated mice and ANIT-cultured Caco-2 cells. SEW2871 not only regained ileum TJs by activating S1PR1 in the epithelial cells of ileum mucosa, but also recovered ileum barrier function, which was further verified by the recovered BA homeostasis in mice ileum (content and tissue) by using of high-performance liquid chromatographytandem mass spectrometry (LC-MS/MS). Subsequently, the improved intestinal injury and inflammation further strengthened that SEW2871 modulated intestinal barrier function in ANIT-treated mice. Finally, our data revealed that along with the down-regulated levels of serum lipopolysaccharides (LPS), SEW2871 improved liver function and relieved hepatitis via blocking TLR4/MyD88/NF-kB signaling pathway in ANIT-treated mice. In conclusion, these results demonstrated that activating intestinal S1PR1 by SEW2871 could modulate intestinal barrier function, leading to the improvement of cholestatic hepatitis in ANIT-treated mice via the "gut-liver" axis.


Subject(s)
Cholestasis , Hepatitis , Animals , Humans , Mice , 1-Naphthylisothiocyanate/adverse effects , 1-Naphthylisothiocyanate/metabolism , 1-Naphthylisothiocyanate/toxicity , Caco-2 Cells , Cholestasis/metabolism , Chromatography, Liquid , Hepatitis/metabolism , Liver/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Tandem Mass Spectrometry
15.
Xenobiotica ; 53(8-9): 559-571, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37885225

ABSTRACT

Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.


Subject(s)
Acute Kidney Injury , Cisplatin , Rats , Animals , Cisplatin/adverse effects , Cisplatin/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Indican/toxicity , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Kidney/metabolism
16.
Chin J Nat Med ; 21(8): 589-598, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37611977

ABSTRACT

Total glucosides of Rhizoma Smilacis Glabrae (RSG) are selective immunosuppressants that exhibit primary efficacy in the treatment of rheumatoid arthritis through targeted inhibition of activated T cells. In this study, we aimed to investigate the potential application of RSG in the treatment of psoriasis and elucidate its mechanism of action and material basis. Our findings revealed significant improvements upon administration of RSG in an imiquimod (IMQ)-induced psoriasis model. These improvements were characterized by a remarkable increase in the number of tail scales in mice and a substantial amelioration of skin erythema, ulceration, and flaking. By transcriptome sequencing and T-cell flow sorting assay, we identified notable effects of RSG on the modulation of various cellular processes. Specifically, RSG prominently down-regulated the Th17/Treg ratio in damaged skin tissues and reduced the proportion of G2 phase cells. Furthermore, RSG exhibited a stimulatory effect on the proliferation and differentiation of epithelial cells. Of particular interest, we discovered that ß-sitosterol, sitostenone, stigmasterol, smiglanin, and cinchonain Ib displayed potent inhibitory effects on the IL-17-mediated inflammatory response in HaCaT cells. In summary, our study highlights the therapeutic potential of RSG in the treatment of psoriasis, attributed to its ability to regulate the Th17/Treg balance. These findings contribute to the development of new indications for RSG and provide a solid theoretical foundation for further exploration in this field.


Subject(s)
Arthritis, Rheumatoid , Psoriasis , Animals , Mice , T-Lymphocytes, Regulatory , Psoriasis/drug therapy , Biological Assay , Glucosides/pharmacology
17.
Cell Biol Toxicol ; 39(6): 2787-2792, 2023 12.
Article in English | MEDLINE | ID: mdl-37115478

ABSTRACT

The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which has a close relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) plays an important role not only in regulating the fibrosis process but also in maintaining the mitochondrial function of pancreatic ß-cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG up-regulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose-cultured HK-2 cells and 8-weeks-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF.

18.
Arch Biochem Biophys ; 741: 109617, 2023 06.
Article in English | MEDLINE | ID: mdl-37121295

ABSTRACT

This study aimed to investigate the effect and mechanism of 8-methoxypsoralen (8-MOP) on acetaminophen (APAP)-induced hepatotoxicity in mice. The study found that 1 h after intraperitoneal injection of 300 mg/kg APAP, treatment with 40 mg/kg, 80 mg/kg and 120 mg/kg 8-MOP could reduce serum transaminase level and histopathological liver necrosis area. Elevated mRNA expression of liver inflammatory mediators caused by excessive APAP was also reversed. 8-MOP significantly reduced APAP-induced hepatotoxicity dose-dependently, and the highest therapeutic dose of 8-MOP (120 mg/kg) had no harmful effects on the liver. Cocktail probe assay revealed that 8-MOP can inhibit Cyp2e1 enzymatic activities of mice, thereby reducing the production of acetaminophen-cysteine (APAP-CYS), a toxic metabolite of APAP. 8-MOP had no significant effect on the protein and gene expression of Cyp2e1. The three-dimensional structures of mouse Cyp2e1 were constructed by homologous modeling. Molecular docking showed that 8-MOP had a good binding effect on the enzyme activity site of Cyp2e1. In summary, 8-MOP dose-dependently attenuated APAP-induced hepatotoxicity by binding to Cyp2e1 and occupying the active center of the enzyme, thus competitively inhibiting the oxidative metabolism of APAP, and reducing the generation of toxic product APAP-CYS.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Methoxsalen , Animals , Mice , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Cytochrome P-450 CYP2E1/metabolism , Liver/metabolism , Methoxsalen/pharmacology , Molecular Docking Simulation
20.
Phytomedicine ; 113: 154703, 2023 May.
Article in English | MEDLINE | ID: mdl-36889164

ABSTRACT

BACKGROUND: Hepatic lipid accumulation was a major promoter for the further development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2DM). mTOR/YY1 signaling pathway regulated many metabolic processes in different organs, and played an important role in hepatic lipid metabolism. Thus, targeting mTOR/YY1 signaling pathway might be a novel therapeutic strategy of T2DM-associated NALFD. PURPOSE: To investigate the effects and the mechanism of quercetin against T2DM-associated NAFLD. STUDY DESIGN AND METHODS: The combine abilities of 24 flavonoid compounds with mTOR were detected by computer virtual screening (VS) and molecular modeling. mTOR/YY1 signaling pathway was examined in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-cultured HepG2 cells. YY1 overexpression lentivirus vector and mTOR specific inhibitor rapamycin were used to further identify the indispensable role of mTOR/YY1 signaling pathway in quercetin's amelioration effect of hepatic lipid accumulation in vitro. Clinical studies, luciferase assay and chromatin immunoprecipitation (ChIP) assay were all carried out to investigate the potential mechanisms by which quercetin exerted its amelioration effect of hepatic lipid accumulation. RESULTS: Quercetin had the strongest ability to combine with mTOR and could competitively occupy its binding pocked. Along with the alleviated hepatic injury by quercetin, mTOR/YY1 signaling pathway was down-regulated in vivo and in vitro. However, the alleviation effect of quercetin against hepatic lipid accumulation was inhibited by YY1 overexpression in vitro. Mechanistically, the down-regulated nuclear YY1 induced by quercetin directly bound to CYP7A1 promoter and activated its transcription, resulting in the restoration of cholesterol homeostasis via the conversion of cholesterol-to-bile acids (BAs). CONCLUSION: The hepatoprotective effect of quercetin on T2DM-associated NAFLD was linked to the restoration of cholesterol homeostasis by the conversion of cholesterol-to-BAs via down-regulating mTOR/YY1 signaling pathway, leading to the increased CYP7A1 activity.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Quercetin/pharmacology , Quercetin/therapeutic use , Bile Acids and Salts/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Cholesterol/metabolism , Lipid Metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...