Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(8): 13597-13613, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859326

ABSTRACT

The hard X-ray nanoprobe beamline is the first beamline to take advantage of the full coherent beam to attain the nanoscale focusing at the Shanghai Synchrotron Radiation Facility (SSRF). Here we introduce the beamline and specially go over the features of the multilayer Kirkpatrick-Baez focusing system and its supporting phase compensator system. The performance and stability of the phase compensator are also put to the test. By using the speckle scanning metrology, the wavefront of a focused beam was characterized and intensity distribution near the focus was reconstructed. The focusing performance was greatly enhanced by two phase compensations based on a global optimization technique, and a two-dimensional focal spot of 26 nm × 17 nm was achieved and maintained with good stability.

2.
J Synchrotron Radiat ; 31(Pt 1): 10-16, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38010795

ABSTRACT

X-ray mirrors for synchrotron radiation are often bent into a curved figure and work under grazing-incidence conditions due to the strong penetrating nature of X-rays to most materials. Mirrors of different cross sections have been recommended to reduce the mirror's slope inaccuracy and clamping difficulty in order to overcome mechanical tolerances. With the development of hard X-ray focusing, it is difficult to meet the needs of focusing mirrors with small slope error with the existing mirror processing technology. Deformable mirrors are adaptive optics that can produce a flexible surface figure. A method of using a deformable mirror as a phase compensator is described to enhance the focusing performance of an X-ray mirror. This paper presents an active piezoelectric plane X-ray focusing mirror with a linearly changing thickness that has the ability of phase compensation while focusing X-rays. Benefiting from its special structural design, the mirror can realize flexible focusing at different focusing geometries using a single input driving voltage. A prototype was used to measure its performance under one-dimension and two-dimension conditions. The results prove that, even at a bending magnet beamline, the mirror can easily achieve a single-micrometre focusing without a complicated bending mechanism or high-precision surface processing. It is hoped that this kind of deformable mirror will have a wide and flexible application in the synchrotron radiation field.

3.
Science ; 376(6592): 517-521, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35482882

ABSTRACT

Improving composite battery electrodes requires a delicate control of active materials and electrode formulation. The electrochemically active particles fulfill their role as energy exchange reservoirs through interacting with the surrounding conductive network. We formulate a network evolution model to interpret the regulation and equilibration between electrochemical activity and mechanical damage of these particles. Through statistical analysis of thousands of particles using x-ray phase contrast holotomography in a LiNi0.8Mn0.1Co0.1O2-based cathode, we found that the local network heterogeneity results in asynchronous activities in the early cycles, and subsequently the particle assemblies move toward a synchronous behavior. Our study pinpoints the chemomechanical behavior of individual particles and enables better designs of the conductive network to optimize the utility of all the particles during operation.

4.
Nat Commun ; 13(1): 704, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35121768

ABSTRACT

Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries.

5.
J Synchrotron Radiat ; 28(Pt 1): 278-282, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33399578

ABSTRACT

Nano-resolution synchrotron X-ray spectro-tomography has been demonstrated as a powerful tool for probing the three-dimensional (3D) structural and chemical heterogeneity of a sample. By reconstructing a number of tomographic data sets recorded at different X-ray energy levels, the energy-dependent intensity variation in every given voxel fingerprints the corresponding local chemistry. The resolution and accuracy of this method, however, could be jeopardized by non-ideal experimental conditions, e.g. instability in the hardware system and/or in the sample itself. Herein is presented one such case, in which unanticipated sample deformation severely degrades the data quality. To address this issue, an automatic 3D image registration method is implemented to evaluate and correct this effect. The method allows the redox heterogeneity in partially delithiated LixTa0.3Mn0.4O2 battery cathode particles to be revealed with significantly improved fidelity.

6.
Nat Commun ; 11(1): 6342, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33311507

ABSTRACT

Lithium-rich nickel-manganese-cobalt (LirNMC) layered material is a promising cathode for lithium-ion batteries thanks to its large energy density enabled by coexisting cation and anion redox activities. It however suffers from a voltage decay upon cycling, urging for an in-depth understanding of the particle-level structure and chemical complexity. In this work, we investigate the Li1.2Ni0.13Mn0.54Co0.13O2 particles morphologically, compositionally, and chemically in three-dimensions. While the composition is generally uniform throughout the particle, the charging induces a strong depth dependency in transition metal valence. Such a valence stratification phenomenon is attributed to the nature of oxygen redox which is very likely mostly associated with Mn. The depth-dependent chemistry could be modulated by the particles' core-multi-shell morphology, suggesting a structural-chemical interplay. These findings highlight the possibility of introducing a chemical gradient to address the oxygen-loss-induced voltage fade in LirNMC layered materials.

7.
Nat Commun ; 11(1): 4433, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32895388

ABSTRACT

Surface lattice reconstruction is commonly observed in nickel-rich layered oxide battery cathode materials, causing unsatisfactory high-voltage cycling performance. However, the interplay of the surface chemistry and the bulk microstructure remains largely unexplored due to the intrinsic structural complexity and the lack of integrated diagnostic tools for a thorough investigation at complementary length scales. Herein, by combining nano-resolution X-ray probes in both soft and hard X-ray regimes, we demonstrate correlative surface chemical mapping and bulk microstructure imaging over a single charged LiNi0.8Mn0.1Co0.1O2 (NMC811) secondary particle. We reveal that the sub-particle regions with more micro cracks are associated with more severe surface degradation. A mechanism of mutual modulation between the surface chemistry and the bulk microstructure is formulated based on our experimental observations and finite element modeling. Such a surface-to-bulk reaction coupling effect is fundamentally important for the design of the next generation battery cathode materials.

8.
Nat Commun ; 11(1): 2310, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32385347

ABSTRACT

The microstructure of a composite electrode determines how individual battery particles are charged and discharged in a lithium-ion battery. It is a frontier challenge to experimentally visualize and, subsequently, to understand the electrochemical consequences of battery particles' evolving (de)attachment with the conductive matrix. Herein, we tackle this issue with a unique combination of multiscale experimental approaches, machine-learning-assisted statistical analysis, and experiment-informed mathematical modeling. Our results suggest that the degree of particle detachment is positively correlated with the charging rate and that smaller particles exhibit a higher degree of uncertainty in their detachment from the carbon/binder matrix. We further explore the feasibility and limitation of utilizing the reconstructed electron density as a proxy for the state-of-charge. Our findings highlight the importance of precisely quantifying the evolving nature of the battery electrode's microstructure with statistical confidence, which is a key to maximize the utility of active particles towards higher battery capacity.

9.
Nat Commun ; 11(1): 83, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31913275

ABSTRACT

Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic "surface-to-bulk" charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...