Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-483948

ABSTRACT

Severe injuries following viral infection cause lung epithelial destruction with the presence of ectopic basal progenitor cells (EBCs), although the exact function of EBCs remains controversial. We and others previously showed the presence of ectopic tuft cells in the disrupted alveolar region following severe influenza infection. Here, we further revealed that the ectopic tuft cells are derived from EBCs. This process is amplified by Wnt signaling inhibition but suppressed by Notch inhibition. Further analysis revealed that p63-CreER labeled population de novo arising during regeneration includes alveolar epithelial cells when Tamoxifen was administrated after viral infection. The generation of the p63-CreER labeled alveolar cells is independent of tuft cells, demonstrating segregated differentiation paths of EBCs in lung repair. EBCs and ectopic tuft cells can also be found in the lung parenchyma post SARS-CoV-2 infection, suggesting a similar response to severe injuries in humans.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-461743

ABSTRACT

SARS-CoV-2 is a worldwide health concern, and new treatment strategies are needed 1. Targeting inflammatory innate immunity pathways holds therapeutic promise, but effective molecular targets remain elusive. Here, we show that human caspase-4 (CASP4), and its mouse homologue, caspase-11 (CASP11), are upregulated in SARS-CoV-2 infections, and that CASP4 expression correlates with severity of SARS-CoV-2 infection in humans. SARS-CoV-2-infected Casp11-/- mice were protected from severe weight loss and lung pathology, including blood vessel damage, compared to wild-type (WT) and gasdermin-D knock out (Gsdmd-/-) mice. GSDMD is a downstream effector of CASP11 and CASP1. Notably, viral titers were similar in the three genotypes. Global transcriptomics of SARS-CoV-2-infected WT, Casp11-/- and Gsdmd-/- lungs identified restrained expression of inflammatory molecules and altered neutrophil gene signatures in Casp11-/- mice. We confirmed that protein levels of inflammatory mediators IL-1{beta}, IL6, and CXCL1, and neutrophil functions, were reduced in Casp11-/- lungs. Additionally, Casp11-/- lungs accumulated less von Willebrand factor, a marker for endothelial damage, but expressed more Kruppel-Like Factor 2, a transcription factor that maintains vascular integrity. Overall, our results demonstrate that CASP4/11, promotes detrimental SARS-CoV-2-associated inflammation and coagulopathy, largely independently of GSDMD, identifying CASP4/11 as a promising drug target for treatment and prevention of severe COVID-19.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-445787

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-{kappa}B activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-{kappa}B signaling. Nsp14 caused the nuclear translocation of NF-{kappa}B p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5-monophosphate dehydrogenase 2 (IMPDH2) protein, which is known to regulate NF-{kappa}B signaling. We confirmed the Nsp14-IMPDH2 protein interaction and found that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14-mediated NF-{kappa}B activation and cytokine induction. Furthermore, IMDPH2 inhibitors (RIB, MPA) efficiently blocked SARS-CoV-2 infection, indicating that IMDPH2, and possibly NF-{kappa}B signaling, is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in causing the activation of NF-{kappa}B.

4.
Article in English | WPRIM (Western Pacific) | ID: wpr-772930

ABSTRACT

Proteins usually associate with other molecules physically to execute their functions. Identifying these interactions is important for the functional analysis of proteins. Previously, we reported the parallel analysis of translated ORFs (PLATO) to couple ribosome display of full-length ORFs with affinity enrichment of mRNA/protein/ribosome complexes for the "bait" molecules, followed by the deep sequencing analysis of mRNA. However, the sample processing, from extraction of precipitated mRNA to generation of DNA libraries, includes numerous steps, which is tedious and may cause the loss of materials. Barcoded PLATO (PLATO-BC), an improved platform was further developed to test its application for protein interaction discovery. In this report, we tested the antisera-antigen interaction using serum samples from patients with inclusion body myositis (IBM). Tripartite motif containing 21 (TRIM21) was identified as a potentially new IBM autoantigen. We also expanded the application of PLATO-BC to identify protein interactions for JQ1, single ubiquitin peptide, and NS5 protein of Zika virus. From PLATO-BC analyses, we identified new protein interactions for these "bait" molecules. We demonstrate that Ewing sarcoma breakpoint region 1 (EWSR1) binds to JQ1 and their interactions may interrupt the EWSR1 association with acetylated histone H4. RIO kinase 3 (RIOK3), a newly identified ubiquitin-binding protein, is preferentially associated with K63-ubiquitin chain. We also find that Zika NS5 protein interacts with two previously unreported host proteins, par-3 family cell polarity regulator (PARD3) and chromosome 19 open reading frame 53 (C19orf53), whose attenuated expression benefits the replication of Zika virus. These results further demonstrate that PLATO-BC is capable of identifying novel protein interactions for various types of "bait" molecules.

SELECTION OF CITATIONS
SEARCH DETAIL