Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999670

ABSTRACT

Alfin-like (AL) is a small plant-specific gene family characterized by a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus, and these genes play prominent roles in plant development and abiotic stress response. In this study, we conducted genome-wide identification and analyzed the AL protein family in Gossypium hirsutum cv. NDM8 to assess their response to various abiotic stresses for the first time. A total of 26 AL genes were identified in NDM8 and classified into four groups based on a phylogenetic tree. Moreover, cis-acting element analysis revealed that multiple phytohormone response and abiotic stress response elements were highly prevalent in AL gene promoters. Further, we discovered that the GhAL19 gene could negatively regulate drought and salt stresses via physiological and biochemical changes, gene expression, and the VIGS assay. The study found there was a significant increase in POD and SOD activity, as well as a significant change in MDA in VIGS-NaCl and VIGS-PEG plants. Transcriptome analysis demonstrated that the expression levels of the ABA biosynthesis gene (GhNCED1), signaling genes (GhABI1, GhABI2, and GhABI5), responsive genes (GhCOR47, GhRD22, and GhERFs), and the stress-related marker gene GhLEA14 were regulated in VIGS lines under drought and NaCl treatment. In summary, GhAL19 as an AL TF may negatively regulate tolerance to drought and salt by regulating the antioxidant capacity and ABA-mediated pathway.

2.
Adv Sci (Weinh) ; 10(27): e2301803, 2023 09.
Article in English | MEDLINE | ID: mdl-37492013

ABSTRACT

Crops must efficiently allocate their limited energy resources to survival, growth and reproduction, including balancing growth and defense. Thus, investigating the underlying molecular mechanism of crop under stress is crucial for breeding. Chloroplasts immunity is an important facet involving in plant resistance and growth, however, whether and how crop immunity modulated by chloroplast is influenced by epigenetic regulation remains unclear. Here, the cotton lysine 2-hydroxyisobutyrylation (Khib) and succinylation (Ksuc) modifications are firstly identified and characterized, and discover that the chloroplast proteins are hit most. Both modifications are strongly associated with plant resistance to Verticillium dahliae, reflected by Khib specifically modulating PR and salicylic acid (SA) signal pathway and the identified GhHDA15 and GhSRT1 negatively regulating Verticillium wilt (VW) resistance via removing Khib and Ksuc. Further investigation uncovers that photosystem repair protein GhPSB27 situates in the core hub of both Khib- and Ksuc-modified proteins network. The acylated GhPSB27 regulated by GhHDA15 and GhSRT1 can raise the D1 protein content, further enhancing plant biomass- and seed-yield and disease resistance via increasing photosynthesis and by-products of chloroplast-derived reactive oxygen species (cROS). Therefore, this study reveals a mechanism balancing high disease resistance and high yield through epigenetic regulation of chloroplast protein, providing a novel strategy to crop improvements.


Subject(s)
Disease Resistance , Lysine , Humans , Disease Resistance/genetics , Lysine/metabolism , Epigenesis, Genetic , Plant Proteins/metabolism , Photosynthesis , Chloroplasts/metabolism
3.
Plant Biotechnol J ; 18(3): 707-720, 2020 03.
Article in English | MEDLINE | ID: mdl-31446669

ABSTRACT

Fine mapping QTLs and identifying candidate genes for cotton fibre-quality and yield traits would be beneficial to cotton breeding. Here, we constructed a high-density genetic map by specific-locus amplified fragment sequencing (SLAF-seq) to identify QTLs associated with fibre-quality and yield traits using 239 recombinant inbred lines (RILs), which was developed from LMY22 (a high-yield Gossypium hirsutumL. cultivar) × LY343 (a superior fibre-quality germplasm with G. barbadenseL. introgressions). The genetic map spanned 3426.57 cM, including 3556 SLAF-based SNPs and 199 SSR marker loci. A total of 104 QTLs, including 67 QTLs for fibre quality and 37 QTLs for yield traits, were identified with phenotypic data collected from 7 environments. Among these, 66 QTLs were co-located in 19 QTL clusters on 12 chromosomes, and 24 QTLs were detected in three or more environments and determined to be stable. We also investigated the genomic components of LY343 and their contributions to fibre-related traits by deep sequencing the whole genome of LY343, and we found that genomic components from G. hirsutum races (which entered LY343 via its G. barbadense parent) contributed more favourable alleles than those from G. barbadense. We further identified six putative candidate genes for stable QTLs, including Gh_A03G1147 (GhPEL6), Gh_D07G1598 (GhCSLC6) and Gh_D13G1921 (GhTBL5) for fibre-length QTLs and Gh_D03G0919 (GhCOBL4), Gh_D09G1659 (GhMYB4) and Gh_D09G1690 (GhMYB85) for lint-percentage QTLs. Our results provide comprehensive insight into the genetic basis of the formation of fibre-related traits and would be helpful for cloning fibre-development-related genes as well as for marker-assisted genetic improvement in cotton.


Subject(s)
Cotton Fiber , Genes, Plant , Gossypium/genetics , Quantitative Trait Loci , Alleles , Chromosome Mapping , Inbreeding , Phenotype , Plant Breeding
SELECTION OF CITATIONS
SEARCH DETAIL