Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Adv Sci (Weinh) ; 11(13): e2306986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240347

ABSTRACT

Previously a ring finger protein 20 (RNF20) is found to be essential for meiotic recombination and mediates H2B ubiquitination during spermatogenesis. However, its role in meiotic division is still unknown. Here, it is shown that RNF20 is localized at both centromeres and spindle poles, and it is required for oocyte acentrosomal spindle organization and female fertility. RNF20-depleted oocytes exhibit severely abnormal spindle and chromosome misalignment caused by defective bipolar organization. Notably, it is found that the function of RNF20 in spindle assembly is not dependent on its E3 ligase activity. Instead, RNF20 regulates spindle assembly by recruiting tropomyosin3 (TPM3) to both centromeres and spindle poles with its coiled-coil motif. The RNF20-TPM3 interaction is essential for acentrosomal meiotic spindle assembly. Together, the studies uncover a novel function for RNF20 in mediating TPM3 recruitment to both centromeres and spindle poles during oocyte spindle assembly.


Subject(s)
Meiosis , Spindle Apparatus , Male , Female , Humans , Spindle Apparatus/metabolism , Oocytes/metabolism , Spindle Poles/metabolism , Centromere
2.
Immunity ; 56(9): 1991-2005.e9, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37659413

ABSTRACT

In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D. serrata and two other species. We discovered diverse CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster, including 2'3'-c-di-GMP. This CDN was a more potent STING agonist than cGAMP in D. melanogaster and it also activated a strong antiviral transcriptional response in D. serrata. Our results shed light on the evolution of cGLRs in flies and provide a basis for understanding the function and regulation of this emerging family of pattern recognition receptors in animal innate immunity.


Subject(s)
Antiviral Agents , Drosophila , Animals , Drosophila melanogaster , Cyclic GMP , Mammals
3.
Autophagy ; 19(11): 2853-2868, 2023 11.
Article in English | MEDLINE | ID: mdl-37434364

ABSTRACT

ABBREVIATIONS: Baf A1: bafilomycin A1; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; IFN: interferon; IKBKE/IKKi: inhibitor of nuclear factor kappa B kinase subunit epsilon; IRF3: interferon regulatory factor 3; ISG: interferon-stimulated gene; ISRE: IFN-stimulated response element; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; PAMPs: pathogen-associated molecule patterns; RIGI/DDX58: RNA sensor RIG-I; SeV: Sendai virus; siRNA: small interfering RNA; TBK1: TANK binding kinase 1; WT: wild-type; VSV: vesicular stomatitis virus.


Subject(s)
Antiviral Agents , Signal Transduction , Autophagy , Immunity, Innate , Interferons , Humans , Animals , Mice
5.
bioRxiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214844

ABSTRACT

In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP. This CDN binds to and activates the protein STING to trigger immunity. We recently discovered in the model organism Drosophila melanogaster two cGAS-like receptors (cGLRs) that activate STING-dependent antiviral immunity and can produce 3'2'-cGAMP, in addition to 2'3'-cGAMP. Here we explore CDN-mediated immunity in 14 different Drosophila species covering 50 million years of evolution and report that 2'3'-cGAMP and 3'2'-cGAMP fail to control infection by Drosophila C virus in D. serrata, D. sechellia and D. mojavensis . Using an accurate and sensitive mass spectrometry method, we discover an unexpected diversity of CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster , including a novel CDN, 2'3'-c-di-GMP. We show that 2'3'-c-di-GMP is the most potent STING agonist identified so far in D. melanogaster and that this molecule also activates a strong antiviral transcriptional response in D. serrata . Our results shed light on the evolution of cGLRs in flies and provide a basis for the understanding of the function and regulation of this emerging family of PRRs in animal innate immunity.

6.
Heliyon ; 9(2): e13623, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36879745

ABSTRACT

How patterns are formed to scale with tissue size remains an unresolved problem. Here we investigate embryonic patterns of gap gene expression along the anterior-posterior (AP) axis in Drosophila. We use embryos that greatly differ in length and, importantly, possess distinct length-scaling characteristics of the Bicoid (Bcd) gradient. We systematically analyze the dynamic movements of gap gene expression boundaries in relation to both embryo length and Bcd input as a function of time. We document the process through which such dynamic movements drive both an emergence of a global scaling landscape and evolution of boundary-specific scaling characteristics. We show that, despite initial differences in pattern scaling characteristics that mimic those of Bcd in the anterior, such characteristics of final patterns converge. Our study thus partitions the contributions of Bcd input and regulatory dynamics inherent to the AP patterning network in shaping embryonic pattern's scaling characteristics.

7.
Proc Natl Acad Sci U S A ; 120(12): e2205140120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36917667

ABSTRACT

The Drosophila systemic immune response against many Gram-positive bacteria and fungi is mediated by the Toll pathway. How Toll-regulated effectors actually fulfill this role remains poorly understood as the known Toll-regulated antimicrobial peptide (AMP) genes are active only against filamentous fungi and not against Gram-positive bacteria or yeasts. Besides AMPs, two families of peptides secreted in response to infectious stimuli that activate the Toll pathway have been identified, namely Bomanins and peptides derived from a polyprotein precursor known as Baramicin A (BaraA). Unexpectedly, the deletion of a cluster of 10 Bomanins phenocopies the Toll mutant phenotype of susceptibility to infections. Here, we demonstrate that BaraA is required specifically in the host defense against Enterococcus faecalis and against the entomopathogenic fungus Metarhizium robertsii, albeit the fungal burden is not altered in BaraA mutants. BaraA protects the fly from the action of distinct toxins secreted by these Gram-positive and fungal pathogens, respectively, Enterocin V and Destruxin A. The injection of Destruxin A leads to the rapid paralysis of flies, whether wild type (WT) or mutant. However, a larger fraction of wild-type than BaraA flies recovers from paralysis within 5 to 10 h. BaraAs' function in protecting the host from the deleterious action of Destruxin is required in glial cells, highlighting a resilience role for the Toll pathway in the nervous system against microbial virulence factors. Thus, in complement to the current paradigm, innate immunity can cope effectively with the effects of toxins secreted by pathogens through the secretion of dedicated peptides, independently of xenobiotics detoxification pathways.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Toll-Like Receptors/metabolism , Signal Transduction , Peptides/metabolism , Fungi/metabolism , Gram-Positive Bacteria/metabolism
8.
Front Immunol ; 14: 1135625, 2023.
Article in English | MEDLINE | ID: mdl-36817462

ABSTRACT

Sterile alpha and HEAT/Armadillo motif-containing protein (SARM) is conserved in evolution and negatively regulates TRIF-dependent Toll signaling in mammals. The SARM protein from Litopenaeus vannamei and its Drosophila orthologue Ectoderm-expressed (Ect4) are also involved in immune defense against pathogen infection. However, the functional mechanism of the protective effect remains unclear. In this study, we show that Ect4 is essential for the viral load in flies after a Drosophila C virus (DCV) infection. Viral load is increased in Ect4 mutants resulting in higher mortality rates than wild-type. Overexpression of Ect4 leads to a suppression of virus replication and thus improves the survival rate of the animals. Ect4 is required for the viral induction of STAT-responsive genes, TotA and TotM. Furthermore, Ect4 interacts with Stat92E, affecting the tyrosine phosphorylation and nuclear translocation of Stat92E in S2 cells. Altogether, our study identifies the adaptor protein Ect4 of the Toll pathway contributes to resistance to viral infection and regulates JAK/STAT signaling pathway.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster , Janus Kinases/metabolism , Signal Transduction , Ectoderm/metabolism , STAT Transcription Factors/metabolism , Mammals/metabolism , Heat-Shock Proteins/metabolism , Drosophila Proteins/metabolism
9.
Sci China Life Sci ; 65(11): 2131-2144, 2022 11.
Article in English | MEDLINE | ID: mdl-36057002

ABSTRACT

The evolutionarily conserved Hippo pathway coordinates cell proliferation, differentiation and apoptosis to regulate organ growth and tumorigenesis. Hippo signaling activity is tightly controlled by various upstream signals including growth factors and cell polarity, but the full extent to which the pathway is regulated during development remains to be resolved. Here, we report the identification of Shaggy, the homolog of mammalian Gsk3ß, as a novel regulator of the Hippo pathway in Drosophila. Our results show that Shaggy promotes the expression of Hippo target genes in a manner that is dependent on its kinase activity. Loss of Shaggy leads to Yorkie inhibition and downregulation of Hippo pathway target genes. Mechanistically, Shaggy acts upstream of the Hippo pathway and negatively regulates the abundance of the FERM domain containing adaptor protein Expanded. Our results reveal that Shaggy is functionally required for Crumbs/Slmb-mediated downregulation of Expanded in vivo, providing a potential molecular link between cellular architecture and the Hippo signaling pathway.


Subject(s)
Drosophila , Hippo Signaling Pathway , Animals , Carcinogenesis , Cell Differentiation , Cell Proliferation , Mammals
10.
Front Immunol ; 13: 933137, 2022.
Article in English | MEDLINE | ID: mdl-35874695

ABSTRACT

Animals adjust their lipid metabolism states in response to pathogens infection. However, the underlying molecular mechanisms for how lipid metabolism responds to infection remain to be elusive. In this study, we assessed the temporal changes of lipid metabolism profiles during infection by an integrated transcriptomics and lipidomics analysis. Ergosterol is identified to be required for proper host defense to pathogens. Notably, ergosterol level is increased in the hemolymph upon bacterial infection. We show that the increase of ergosterol level by food supplement or genetic depletion of Acsl, a long-chain fatty acid-CoA synthetase, promotes host survival against bacterial challenges. Together, our results suggest a critical role of lipid metabolism adaption in the process of host defense against invading pathogens.


Subject(s)
Bacterial Infections , Lipidomics , Animals , Drosophila , Ergosterol , Transcriptome
11.
EMBO J ; 41(7): e109905, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35167135

ABSTRACT

Despite strong natural selection on species, same-sex sexual attraction is widespread across animals, yet the underlying mechanisms remain elusive. Here, we report that the proto-oncogene Myc is required in dopaminergic neurons to inhibit Drosophila male-male courtship. Loss of Myc, either by mutation or neuro-specific knockdown, induced males' courtship propensity toward other males. Our genetic screen identified DOPA decarboxylase (Ddc) as a downstream target of Myc. While loss of Ddc abrogated Myc depletion-induced male-male courtship, Ddc overexpression sufficed to trigger such behavior. Furthermore, Myc-depleted males exhibited elevated dopamine level in a Ddc-dependent manner, and their male-male courtship was blocked by depleting the dopamine receptor DopR1. Moreover, Myc directly inhibits Ddc transcription by binding to a target site in the Ddc promoter, and deletion of this site by genome editing was sufficient to trigger male-male courtship. Finally, drug-mediated Myc depletion in adult neurons by GeneSwitch technique sufficed to elicit male-male courtship. Thus, this study uncovered a novel function of Myc in preventing Drosophila male-male courtship, and supports the crucial roles of genetic factors in inter-male sexual behavior.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Courtship , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Male
12.
Aging (Albany NY) ; 13(11): 15013-15031, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031268

ABSTRACT

Fat storage is one of the important strategies employed in regulating energy homeostasis. Impaired lipid storage causes metabolic disorders in both mammals and Drosophila. In this study, we report CG9911, the Drosophila homolog of ERp44 (endoplasmic reticulum protein 44) plays a role in regulating adipose tissue fat storage. Using the CRISPR/Cas9 system, we generated a CG9911 mutant line deleting 5 bp of the coding sequence. The mutant flies exhibit phenotypes of lower bodyweight, fewer lipid droplets, reduced TAG level and increased expression of lipolysis related genes. The increased lipolysis phenotype is enhanced in the presence of ER stresses and suppressed by a reduction of the ER Ca2+. Moreover, loss of CG9911 per se results in a decrease of ER Ca2+ in the fat body. Together, our results reveal a novel function of CG9911 in promoting fat storage via regulating ER Ca2+ signal in Drosophila.


Subject(s)
Adipocytes/metabolism , Adiposity , Calcium/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Animals , Base Sequence , Drosophila Proteins/genetics , Endoplasmic Reticulum Stress , Intracellular Space/metabolism , Lipolysis , Membrane Proteins/genetics , Models, Biological , Molecular Chaperones/genetics , Mutation/genetics , Phenotype
13.
Cell Biosci ; 11(1): 29, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33536056

ABSTRACT

BACKGROUND: The ketogenic diet (KD) has been recognized as a potentially effective therapy to treat neuropsychiatric diseases, including epilepsy. Previous studies have indicated that KD treatment elevates γ-Amino butyric acid (GABA) levels in both human and murine brains, which presumably contributes to the KD's anti-seizure effects. However, this has not been systematically investigated at the synaptic level, and the underlying molecular mechanisms remain to be elucidated. METHODS: Kainic acid (KA)-induced acute and chronic seizure models were utilized to examine the effects of KD treatment on seizure threshold and epileptogenesis. Synaptic activities in the hippocampus were recorded with the technique of electrophysiology. The effects of the KD on Neuregulin 1 (Nrg1) expression were assessed via RNA sequencing, real-time PCR and Western blotting. The obligatory role of Nrg1 in KD's effects on seizures was evaluated through disruption of Nrg1 signaling in mice by genetically deleting its receptor-ErbB4. RESULTS: We found that KD treatment suppressed seizures in both acute and chronic seizure models and enhanced presynaptic GABA release probability in the hippocampus. By screening molecular targets linked to GABAergic activity with transcriptome analysis, we identified that KD treatment dramatically increased the Nrg1 gene expression in the hippocampus. Disruption of Nrg1 signaling by genetically deleting its receptor-ErbB4 abolished KD's effects on GABAergic activity and seizures. CONCLUSION: Our findings suggest a critical role of Nrg1/ErbB4 signaling in mediating KD's effects on GABAergic activity and seizures, shedding light on developing new therapeutic interventions to seizure control.

14.
Adv Exp Med Biol ; 1218: 59-75, 2020.
Article in English | MEDLINE | ID: mdl-32060871

ABSTRACT

Notch signaling exerts multiple important functions in various developmental processes, including cell differentiation and cell proliferation, while mis-regulation of this pathway results in a variety of complex diseases, such as cancer and developmental defects. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, makes this an attractive model for studying the fundamental mechanisms of how Notch signaling is regulated and how it functions in various cellular contexts. Recently, increasing evidence for epigenetic control of Notch signaling reveals the intimate link between epigenetic regulators and Notch signaling pathway. In this chapter, we summarize the research advances of Notch and CAF-1 in Drosophila development and the epigenetic regulation mechanisms of Notch signaling activity by CAF-1 as well as other epigenetic modification machineries, which enables Notch to orchestrate different biological inputs and outputs in specific cellular contexts.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Epigenesis, Genetic , Receptors, Notch/metabolism , Signal Transduction/genetics , Animals , Drosophila melanogaster/genetics
15.
J Genet Genomics ; 46(4): 221-229, 2019 04 20.
Article in English | MEDLINE | ID: mdl-31078436

ABSTRACT

Autophagy has been evolved as one of the adaptive cellular processes in response to stresses such as nutrient deprivation. Various cellular cargos such as damaged organelles and protein aggregates can be selectively degraded through autophagy. Recently, the lipid storage organelle, lipid droplet (LD), has been reported to be the cargo of starvation-induced autophagy. However, it remains largely unknown how the autophagy machinery recognizes the LDs and whether it can selectively degrade LDs. In this study, we show that Drosophila histone deacetylase 6 (dHDAC6), a key regulator of selective autophagy, is required for the LD turnover in the hepatocyte-like oenocytes in response to starvation. HDAC6 regulates LD turnover via p62/SQSTM1 (sequestosome 1)-mediated aggresome formation, suggesting that the selective autophagy machinery is required for LD recognition and degradation. Furthermore, our results show that the loss of dHDAC6 causes steatosis in response to starvation. Our findings suggest that there is a potential link between selective autophagy and susceptible predisposition to lipid metabolism associated diseases in stress conditions.


Subject(s)
Autophagy , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Histone Deacetylase 6/metabolism , Lipid Droplets/metabolism , Nutrients/metabolism , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/metabolism , Animals , Diet, High-Fat , Protein Transport
16.
J Cell Sci ; 132(2)2019 01 25.
Article in English | MEDLINE | ID: mdl-30630896

ABSTRACT

Chromatin assembly factor 1 (CAF1), a histone chaperone that mediates the deposition of histone H3/H4 onto newly synthesized DNA, is involved in Notch signaling activation during Drosophila wing imaginal disc development. Here, we report another side of CAF1, wherein the subunits CAF1-p105 and CAF1-p180 (also known as CAF1-105 and CAF1-180, respectively) inhibit expression of Notch target genes and show this is required for proliferation of Drosophila ovarian follicle cells. Loss-of-function of either CAF1-p105 or CAF1-p180 caused premature activation of Notch signaling reporters and early expression of the Notch target Hindsight (Hnt, also known as Pebbled), leading to Cut downregulation and inhibition of follicle cell mitosis. Our studies further show Notch is functionally responsible for these phenotypes observed in both the CAF1-p105- and CAF1-p180-deficient follicle cells. Moreover, we reveal that CAF1-p105- and CAF1-p180-dependent Cut expression is essential for inhibiting Hnt expression in follicle cells during their mitotic stage. These findings together indicate a novel negative-feedback regulatory loop between Cut and Hnt underlying CAF1-p105 and CAF-p180 regulation, which is crucial for follicle cell differentiation. In conclusion, our studies suggest CAF1 plays a dual role to sustain cell proliferation by positively or negatively regulating Drosophila Notch signaling in a tissue-context-dependent manner.


Subject(s)
Cell Proliferation , Drosophila Proteins/metabolism , Ovarian Follicle/metabolism , Receptors, Notch/metabolism , Retinoblastoma-Binding Protein 4/metabolism , Signal Transduction , Animals , Drosophila Proteins/biosynthesis , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Imaginal Discs/cytology , Imaginal Discs/metabolism , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Ovarian Follicle/cytology , Receptors, Notch/genetics , Retinoblastoma-Binding Protein 4/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics
17.
J Vis Exp ; (154)2019 12 28.
Article in English | MEDLINE | ID: mdl-31929508

ABSTRACT

Lipids are essential for animal development and physiological homeostasis. Dysregulation of lipid metabolism results in various developmental defects and diseases, such as obesity and fatty liver. Usually, lipids are stored in lipid droplets, which are the multifunctional lipid storage organelles in cells. Lipid droplets vary in size and number in different tissues and under different conditions. It has been reported that lipid droplets are tightly controlled through regulation of its biogenesis and degradation. In Drosophila melanogaster, the oenocyte is an important tissue for lipid metabolism and has been recently identified as a human liver analogue regarding lipid mobilization in response to stress. However, the mechanisms underlying the regulation of lipid droplet metabolism in oenocytes remain elusive. To solve this problem, it is of utmost importance to develop a reliable and sensitive method to directly visualize lipid droplet dynamic changes in oenocytes during development and under stressful conditions. Taking advantage of the lipophilic BODIPY 493/503, a lipid droplet-specific fluorescent dye, described here is a detailed protocol for the dissection and subsequent lipid droplet staining in the oenocytes of Drosophila larvae in response to starvation. This allows for qualitative analysis of lipid droplet dynamics under various conditions by confocal microscopy. Furthermore, this rapid and highly reproducible method can also be used in genetic screens for indentifying novel genetic factors involving lipid droplet metabolism in oenocytes and other tissues.


Subject(s)
Drosophila melanogaster/metabolism , Lipid Droplets/metabolism , Staining and Labeling , Animals , Fat Body/metabolism , Imaging, Three-Dimensional , Larva/metabolism
18.
Nat Cell Biol ; 20(8): 991, 2018 08.
Article in English | MEDLINE | ID: mdl-29674680

ABSTRACT

In the version of this Article originally published, the author had misnumbered the reference citations in the Methods, using numbers 1-14 instead of 46-59. These errors have now been corrected in all online versions of the Article.

19.
Nat Cell Biol ; 20(2): 152-161, 2018 02.
Article in English | MEDLINE | ID: mdl-29335529

ABSTRACT

The process through which multiple types of cell-lineage-restricted progenitor cells are specified from multipotent stem cells is unclear. Here we show that, in intestinal stem cell lineages in adult Drosophila, in which the Delta-Notch-signalling-guided progenitor cell differentiation into enterocytes is the default mode, the specification of enteroendocrine cells (EEs) is initiated by transient Scute activation in a process driven by transcriptional self-stimulation combined with a negative feedback regulation between Scute and Notch targets. Scute activation induces asymmetric intestinal stem cell divisions that generate EE progenitor cells. The mitosis-inducing and fate-inducing activities of Scute guide each EE progenitor cell to divide exactly once prior to its terminal differentiation, yielding a pair of EEs. The transient expression of a fate inducer therefore specifies both type and numbers of committed progenitor cells originating from stem cells, which could represent a general mechanism used for diversifying committed progenitor cells from multipotent stem cells.


Subject(s)
Cell Self Renewal/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Receptors, Notch/genetics , Transcription Factors/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Enteroendocrine Cells/cytology , Enteroendocrine Cells/metabolism , Intestines/cytology , Signal Transduction/genetics , Stem Cells/cytology
20.
Dev Cell ; 43(1): 99-111.e5, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28966044

ABSTRACT

Age-dependent ectopic fat accumulation (EFA) in animals contributes to the progression of tissue aging and diseases such as obesity, diabetes, and cancer. However, the primary causes of age-dependent EFA remain largely elusive. Here, we characterize the occurrence of age-dependent EFA in Drosophila and identify HDAC6, a cytosolic histone deacetylase, as a suppressor of EFA. Loss of HDAC6 leads to significant age-dependent EFA, lipid composition imbalance, and reduced animal longevity on a high-fat diet. The EFA and longevity phenotypes are ameliorated by a reduction of the lipid-droplet-resident protein PLIN2. We show that HDAC6 is associated physically with the chaperone protein dHsc4/Hsc70 to maintain the proteostasis of PLIN2. These findings indicate that proteostasis collapse serves as an intrinsic cue to cause age-dependent EFA. Our study suggests that manipulation of proteostasis could be an alternative approach to the treatment of age-related metabolic diseases such as obesity and diabetes.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Fats/metabolism , Histone Deacetylases/metabolism , Lipid Droplets/metabolism , Perilipin-2/metabolism , Aging , Animals , Autophagy/physiology , Cytosol/metabolism , Diet, High-Fat , Drosophila melanogaster/genetics , Histone Deacetylase 6 , Longevity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...