Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38676276

ABSTRACT

Partial discharge detection is considered a crucial technique for evaluating insulation performance and identifying defect types in cable terminals of high-speed electric multiple units (EMUs). In this study, terminal samples exhibiting four typical defects were prepared from high-speed EMUs. A cable discharge testing system, utilizing high-frequency current sensing, was developed to collect discharge signals, and datasets corresponding to these defects were established. This study proposes the use of the convolutional neural network (CNN) for the classification of discharge signals associated with specific defects, comparing this method with two existing neural network (NN)-based classification models that employ the back-propagation NN and the radial basis function NN, respectively. The comparative results demonstrate that the CNN-based model excels in accurately identifying signals from various defect types in the cable terminals of high-speed EMUs, surpassing the two existing NN-based classification models.

2.
Opt Express ; 30(16): 29546-29563, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299128

ABSTRACT

Poor wide field-of-view (FOV) performances and low production yields are major factors that restrict the application of organic light-emitting diodes (OLEDs) in large-size panels. In this paper, we propose an optimization and analysis method to improve optical performances of stratified OLEDs over wide FOV with consideration of the thickness tolerance in the practical production process. With key optical performance parameters defined using the angle-dependent luminescence spectra, including the external quantum efficiency (EQE), current efficiency (CE), just noticeable color difference (JNCD), and the color coordinates, the optimization of OLEDs over wide FOV is described as a multi-parameter and multi-objective optimization problem which is accomplished by the genetic algorithms (GAs). Further, the thickness tolerance is introduced to improve the structure stability considering thickness fluctuations in the practical production process. Appropriate thickness tolerances can be determined to achieve stable structures for the OLED device by defining and analyzing the distributions of preference regions of the GA output noninferior solutions and the correlation coefficients between the layer thicknesses. Based on the proposed methods, high-throughput simulations are carried out on a typical Green Bottom-emitting OLED (G-BOLED) to design a stable device structure with high-performances. Experimental results demonstrate that compared with the initial device, the performances of the optimized device have been significantly improved, with the CE improved by over 30% in the normal direction, the EQE improved by over 20%, and the JNCD reduced from 4.45 to 1.36 over the whole FOV of 0-60°. In addition, within the thickness fluctuation in the practical process, optimized devices can strictly satisfy the "Best" preferred region, indicating that the structure is more stable against thickness fluctuations in the practical production process. The proposed optimization method can simultaneously improve optical performances over wide FOV and provide a stable structure for stratified OLEDs, and it therefore can be expected to improve the production yields and promote the OLEDs applied to large-size panels.

3.
Chem Sci ; 12(14): 5171-5176, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-34163754

ABSTRACT

Pure organic emitters with full utilization of triplet excitons are in high demand for organic light-emitting diodes (OLEDs). Herein, through modulation of electron donors and introduction of phenyl rings as π spacers, we present three pure organic fluorophores (BCz, BTCz and BPTCz) with the hybridized local and charge-transfer (HLCT) excited state feature for OLED fabrication. Importantly, the introduction of π spacers in BPTCz not only enhances locally excited character with a fast radiative decay but also promotes intermolecular interactions to suppress non-radiative decays, contributing to a high solid-state fluorescence efficiency over 90%. Significantly, BPTCz not only endows its doped OLEDs with an external quantum efficiency (EQE) up to 19.5%, but also its non-doped OLED with a high EQE of 17.8%, and these outstanding efficiencies are the state-of-the-art performances of HLCT-based OLEDs.

4.
Nanoscale ; 12(3): 2103-2110, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31913379

ABSTRACT

Quantum dots (QDs) have shown great potential for next generation displays owing to their fascinating optoelectronic characteristics. In this work, we present a novel full-color display based on blue organic light emitting diodes (BOLEDs) and patterned red and green QD color conversion layers (CCLs). To enable efficient blue-to-green or blue-to-red photoconversion, micrometer-thick QD films with a uniform surface morphology are obtained by utilizing UV-induced polymerization. The uniform QD layers are directly inkjet printed on red and green color filters to further eliminate the residual blue emissions. Based on this QD-BOLED architecture, a 6.6-inch full-color display with 95% Broadcasting Service Television 2020 (BT.2020) color gamut and wide viewing-angles is successfully demonstrated. The inkjet printing method introduced in this work provides a cost-effective way to extend the applications of QDs for full-color displays.

5.
Chem Sci ; 10(35): 8129-8134, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31857879

ABSTRACT

Thermally activated delayed fluorescence (TADF) materials have opened a new chapter for high-efficiency and low-cost organic light-emitting diodes (OLEDs). Herein, we describe a novel and effective design strategy for TADF emitters which includes introducing a carbazole donor unit at the ortho-position, at which the donor and acceptor groups are spatially in close proximity to guarantee the existence of intramolecular electrostatic attraction and through-space charge transfer, leading to reduced structural vibrations, suppressed non-radiative decay and rapid radiative decay to avoid excited state energy loss. As a result, a green TADF emitter (2Cz-DPS) showing high solid-state photoluminescence quantum efficiency (91.9%) and excellent OLED performance was produced. Theoretical simulations reveal that the non-adiabatic coupling accelerates the reverse intersystem crossing of 2Cz-DPS, resulting in a state-of-the-art non-doped OLED with an extremely high external quantum efficiency of 28.7%.

6.
ACS Appl Mater Interfaces ; 11(42): 39026-39034, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31565917

ABSTRACT

Two red fluorophores (TPABTPA and TPABCHO) with hybridized local and charge-transfer properties were systematically studied. TPABTPA and TPABCHO enabled nondoped organic light-emitting diodes (OLEDs) with excellent external quantum efficiency (EQE) of 11.1% and 5.0%, respectively, attributed to high exciton utilization efficiency of 82% and 46%, respectively. Furthermore, TPABTPA and TPABCHO were utilized as complementary emitters for a sky-blue thermally activated delayed fluorescence material to fabricate two-color fluorescent white OLEDs (WOLEDs) in a fully nondoped emissive-layer configuration. Furthermore, device performance was optimized through a simple device engineering strategy by sandwiching a suitable interlayer between the emitting layers. As a result, the optimized TPABTPA- and TPABCHO-based WOLEDs successfully achieved high EQEs of 23.0% and 8.6%, respectively, along with a low efficiency roll-off and good spectral stability, due to high exciton utilization efficiency of the emitters and importantly efficient suppression of a nonradiative energy-transfer process.

SELECTION OF CITATIONS
SEARCH DETAIL
...