Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
Pestic Biochem Physiol ; 204: 106046, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277373

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that threatens the growth and sustainability of the sericultural industry. Currently, accumulated studies showed that long non-coding RNAs (lncRNAs) play important roles in the genesis and progression of various viruses and host-pathogens interactions. However, the functions and regulatory mechanisms of lncRNAs in insect-virus interaction are still limited. In this study, transcriptome sequencing and ribosome profiling sequencing (Ribo-seq) were performed in the BmNPV-infected midgut and control tissue, and a total of 9 differentially expressed (DE) lncRNAs and 27 small ORFs (sORFs) with micropeptide coding potential were identified. Among them, lncRNA XR_001139971.3 (lnc557) is verified to be significantly up-regulated upon BmNPV infection and may have the potential to encode a small peptide (ORF-674). The subcellular localization experiment showed that lnc557 was expressed in the cytoplasm. Overexpression of lnc557 promotes BmNPV replication and vice versa. By combining RNA pull-down, mass spectrometry, protein truncation and RNA immunoprecipitation (RIP) assays, we confirmed that lnc557 can bind to the RRM-5 domain of BmELAVL1 protein. Subsequently, we found that lnc557 could promote the expression of BmELAVL1 by enhancing the stability of BmELAVL1. Further, enhancing the expression of BmELAVL1 can promote the proliferation of BmNPV, while knockdown shows the opposite effect. Our data suggest that lnc557-mediated BmELAVL1 expression enhancement could play a positive role in BmNPV replication, which will provide a new insight into the molecular mechanism of interaction between Bombyx mori and virus.


Subject(s)
Bombyx , Nucleopolyhedroviruses , RNA, Long Noncoding , Virus Replication , Nucleopolyhedroviruses/genetics , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Bombyx/virology , Bombyx/genetics , Bombyx/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/genetics
2.
CNS Neurosci Ther ; 30(9): e70024, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39218798

ABSTRACT

AIMS: Type 2 diabetes mellitus (T2DM) is related to an increased risk of postoperative cognitive dysfunction (POCD), which may be caused by neuronal hyperexcitability. Astrocyte glutamate transporter 1 (GLT-1) plays a crucial role in regulating neuron excitability. We investigated if T2DM would magnify the increased neuronal excitability induced by anesthesia/surgery (A/S) and lead to POCD in young adult mice, and if so, determined whether these effects were associated with GLT-1 expression. METHODS: T2DM model was induced by high fat diet (HFD) and injecting STZ. Then, we evaluated the spatial learning and memory of T2DM mice after A/S with the novel object recognition test (NORT) and object location test (OLT). Western blotting and immunofluorescence were used to analyze the expression levels of GLT-1 and neuronal excitability. Oxidative stress reaction and neuronal apoptosis were detected with SOD2 expression, MMP level, and Tunel staining. Hippocampal functional synaptic plasticity was assessed with long-term potentiation (LTP). In the intervention study, we overexpressed hippocampal astrocyte GLT-1 in GFAP-Cre mice. Besides, AAV-Camkllα-hM4Di-mCherry was injected to inhibit neuronal hyperexcitability in CA1 region. RESULTS: Our study found T2DM but not A/S reduced GLT-1 expression in hippocampal astrocytes. Interestingly, GLT-1 deficiency alone couldn't lead to cognitive decline, but the downregulation of GLT-1 in T2DM mice obviously enhanced increased hippocampal glutamatergic neuron excitability induced by A/S. The hyperexcitability caused neuronal apoptosis and cognitive impairment. Overexpression of GLT-1 rescued postoperative cognitive dysfunction, glutamatergic neuron hyperexcitability, oxidative stress reaction, and apoptosis in hippocampus. Moreover, chemogenetic inhibition of hippocampal glutamatergic neurons reduced oxidative stress and apoptosis and alleviated postoperative cognitive dysfunction. CONCLUSIONS: These findings suggest that the adult mice with type 2 diabetes are at an increased risk of developing POCD, perhaps due to the downregulation of GLT-1 in hippocampal astrocytes, which enhances increased glutamatergic neuron excitability induced by A/S and leads to oxidative stress reaction, and neuronal apoptosis.


Subject(s)
Astrocytes , Diabetes Mellitus, Type 2 , Down-Regulation , Excitatory Amino Acid Transporter 2 , Hippocampus , Mice, Inbred C57BL , Postoperative Cognitive Complications , Animals , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/biosynthesis , Excitatory Amino Acid Transporter 2/genetics , Astrocytes/metabolism , Postoperative Cognitive Complications/etiology , Postoperative Cognitive Complications/metabolism , Hippocampus/metabolism , Mice , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat/adverse effects , Mice, Transgenic
3.
Water Res ; 266: 122355, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39226743

ABSTRACT

In recent decades, global aquaculture has expanded rapidly, raising concerns about coastal environmental degradation due to unregulated or poorly regulated discharge of aquaculture tailwater. Despite the crucial role of dissolved organic matter (DOM) in biogeochemical processes and aquatic biodiversity, the influence of aquaculture type on the molecular characteristics of DOM remains largely unexplored. Herein, this study investigated the variations in chemical and spectroscopic properties as well as molecular characteristics and composition of DOM across different aquaculture types including crustacean, fish and shellfish. Our findings revealed notable differences in DOM quantities among different aquaculture types, with crustacean and fish aquaculture water containing higher DOM amount compared to shellfish aquaculture water. This disparity can be attributed to the more frequent formulated feeds of crustacean and fish in contrast to shellfish aquaculture. Furthermore, distinct differences were also observed in the characteristics and composition of DOM among the different aquaculture waters. Specifically, DOM in shellfish aquaculture water exhibited a higher abundance of unsaturated and reduced molecules as well as increased aromaticity compared to the other two aquaculture waters. Conversely, DOM from fish aquaculture water showed a greater contribution from terrestrial origin characterized by elevated levels of plant-based components such as lignin-like and tannin-like compounds. Interestingly, DOM from shellfish aquaculture water contained lower levels of microbial-derived components such as lipid-like and protein-like compounds, likely due to reduced microorganism populations resulting from lower nutrients availability and higher salinity. Overall, these significant variations in characteristics and composition of DOM underscore the potential impacts of aquaculture type on the DOM biogeochemical cycle and the environmental quality in aquatic ecosystems.

4.
CNS Neurosci Ther ; 30(8): e14902, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39138637

ABSTRACT

AIMS: Postoperative delirium (POD) is a common neurological complication in elderly patients after anesthesia/surgery. The main purpose of this study is to explore the effect of circRNA-targeted miRNA regulating SIRT3 on mitochondrial function through ceRNA mechanism under the surgical model of tibial fracture and to further explore the potential mechanism of postoperative delirium mediated by circRNA, so as to provide new ideas for clinical diagnosis and prevention of POD. METHODS: The surgical model of tibial fracture under sevoflurane anesthesia caused acute delirium-like behavior in elderly mice. We observed that the decrease of SIRT3 and mitochondrial dysfunction was related to POD, and miRNA and circRNA (circRNA_34414) related to SIRT3 were further studied. Through luciferase and RAP, we observed that circRNA_34414, as a miRNA sponge, was involved in the regulation of SIRT3 expression. RESULTS: Postoperative delirium in elderly mice showed decreased expression of hippocampal circRNA_34414, increased expression of miR-6960-5p, decreased expression of SIRT3, and impaired mitochondrial membrane potential. Overexpression of circRNA_34414, or knockdown of miR-6960-5p, or overexpression of SIRT3 in hippocampal CA1 glutamatergic neurons significantly upregulated hippocampal SIRT3 expression, increased mitochondrial membrane potential levels, and significantly ameliorated postoperative delirium in aged mice; CircRNA_34414 ameliorates postoperative delirium in mice, possibly by targeting miR-6960-5p to upregulate SIRT3. CONCLUSIONS: CircRNA_34414 is involved in the improvement of postoperative delirium induced by anesthesia/surgery by upregulating SIRT3 via sponging miR-6960-5p.


Subject(s)
Delirium , MicroRNAs , Neurons , Postoperative Complications , RNA, Circular , Sirtuin 3 , Animals , Sirtuin 3/metabolism , Sirtuin 3/genetics , Delirium/metabolism , Mice , MicroRNAs/metabolism , MicroRNAs/genetics , RNA, Circular/metabolism , Neurons/metabolism , Neurons/drug effects , Male , Postoperative Complications/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/drug effects , Mice, Inbred C57BL , Tibial Fractures/surgery , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology
5.
Int J Food Microbiol ; 425: 110868, 2024 Dec 02.
Article in English | MEDLINE | ID: mdl-39154568

ABSTRACT

The Hazard Analysis and Critical Control Point (HACCP) system plays a crucial role in ensuring food safety within food service establishments, effectively reducing the risk of foodborne diseases. This study focused on assessing the risk of microbe contamination in poultry-based cook-served food during meal preparation in four restaurants and five selected HACCP-certified hotels in eastern China. We examined samples collected from 26 poultry-based cooked dishes, 248 food contact surfaces, 252 non-food contact surfaces, and 121 hand swabs. Our findings indicated a favorable trend of compliance with Chinese national standards, as Escherichia coli and Campylobacter were not detected in any cooked food samples. However, the microbiological assessments revealed non-compliance with total plate count standards in 7 % of the cooked samples from restaurants. In contrast, both dine-in hotels and restaurants exhibited significant non-compliance with guidance concerning food and non-food contact surfaces. Furthermore, our study found that chefs' hand hygiene did not meet microbiological reference standards, even after washing. Notably, Campylobacter persisted at 27 % and 30 % on chefs' hands, posing a significant risk of cross-contamination and foodborne diseases. These findings emphasize the urgent necessity for enhanced supervision of hygiene procedures and process monitoring in the HACCP-certified establishments engaged in the preparation and serving of food. Targeted interventions and food safety education for different chef subgroups can enhance food handling practices and reduce the risk of foodborne diseases in independent food establishments.


Subject(s)
Food Contamination , Food Microbiology , Restaurants , Restaurants/standards , China , Humans , Food Contamination/analysis , Food Contamination/prevention & control , Hazard Analysis and Critical Control Points/methods , Food Safety , Food Handling/standards , Cooking/standards , Campylobacter/isolation & purification , Animals , Colony Count, Microbial , Hand Hygiene/standards
6.
Clin Transl Oncol ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031295

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is characterized by a complex pathogenesis that confers aggressive malignancy, leading to a lack of dependable biomarkers for predicting invasion and metastasis, which results in poor prognoses in patients with HCC. Glycogen storage disease (GSD) is an uncommon metabolic disorder marked by hepatomegaly and liver fibrosis. Notably, hepatic adenomas in GSD patients present a heightened risk of malignancy compared to those in individuals without the disorder. In this investigation, PON1 emerged as a potential pivotal gene for HCC through bioinformatics analysis. METHODS: Transcriptomic profiling data of liver cancer were collected and integrated from TCGA and GEO databases. Bioinformatics analysis was conducted to identify mutated mRNAs associated with GSD, and the PON1 gene was selected as a key gene. Patients were grouped based on the expression levels of PON1, and differences in clinical characteristics, biological pathways, immune infiltration, and expression of immune checkpoints were compared. RESULTS: The expression levels of the PON1 gene showed significant differences between the high-expression group and the low-expression group in HCC patients. Further analysis indicated that the PON1 gene at different expression levels might influence the clinical manifestations, biological processes, immune infiltration, and expression of immune checkpoints in HCC. Additionally, immunohistochemistry (IHC) results revealed high expression of PON1 in normal tissues and low expression in HCC tissues. These findings provide important clues and future research directions for the early diagnosis, prognosis, immunotherapy, and potential molecular interactions of HCC. CONCLUSION: Our investigation underscores the noteworthy prognostic significance of PON1 in HCC, suggesting its potential pivotal role in modulating tumor progression and immune cell infiltration. These findings establish PON1 as a novel tumor biomarker with significant implications for the prognosis, targeted therapy, and immunotherapy of patients with HCC.

7.
Bioengineering (Basel) ; 11(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39061810

ABSTRACT

Flatfoot is a common foot deformity, causing foot pain, osteoarthritis of the midfoot, and even knee and hip dysfunction. The elastic modulus of foot soft tissues and its association with gait biomechanics still remain unclear. For this study, we recruited 20 young individuals with flatfoot and 22 age-matched individuals with normal foot arches. The elastic modulus of foot soft tissues (posterior tibial tendon, flexor digitorum brevis, plantar fascia, heel fat pad) was obtained via ultrasound elastography. Gait data were acquired using an optical motion capture system. The association between elastic modulus and gait data was analyzed via correlation analysis. The elastic modulus of the plantar fascia (PF) in individuals with flatfoot was higher than that in individuals with normal foot arches. There was no significant difference in the elastic modulus of the posterior tibial tendon (PTT), the flexor digitorum brevis (FDB), or the heel fat pad (HFD), or the thickness of the PF, PTT, FDB, and HFD. Individuals with flatfoot showed greater motion of the hip and pelvis in the coronal plane, longer double-support phase time, and greater maximum hip adduction moment during walking. The elastic modulus of the PF in individuals with flatfoot was positively correlated with the maximum hip extension angle (r = 0.352, p = 0.033) and the maximum hip adduction moment (r = 0.429, p = 0.039). The plantar fascia is an important plantar structure in flatfoot. The alteration of the plantar fascia's elastic modulus is likely a significant contributing factor to gait abnormalities in people with flatfoot. More attention should be given to the plantar fascia in the young population with flatfoot.

8.
Sci Rep ; 14(1): 15853, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38982082

ABSTRACT

Influenza (Flu) is a severe health, medical, and economic problem, but no medication that has excellent outcomes and lowers the occurrence of these problems is now available. GanghuoQingwenGranules (GHQWG) is a common Chinese herbal formula for the treatment of influenza (flu). However, its methods of action remain unknown. We used network pharmacology, molecular docking, and molecular dynamics simulation techniques to investigate the pharmacological mechanism of GHQWG in flu. TCMSP and various types of literature were used to obtain active molecules and targets of GHQWG. Flu-related targets were found in the Online Mendelian Inheritance in Man (OMIM) database, the DisFeNET database, the Therapeutic Target Database (TTD), and the DrugBank database. To screen the key targets, a protein-protein interaction (PPI) network was constructed. DAVID was used to analyze GO and KEGG pathway enrichment. Target tissue and organ distribution was assessed. Molecular docking was used to evaluate interactions between possible targets and active molecules. For the ideal core protein-compound complexes obtained using molecular docking, a molecular dynamics simulation was performed. In total, 90 active molecules and 312 GHQWG targets were discovered. The PPI network's topology highlighted six key targets. GHQWG's effects are mediated via genes involved in inflammation, apoptosis, and oxidative stress, as well as the TNF and IL-17 signaling pathways, according to GO and KEGG pathway enrichment analysis. Molecular docking and molecular dynamics simulations demonstrated that the active compounds and tested targets had strong binding capabilities. This analysis accurately predicts the effective components, possible targets, and pathways involved in GHQWG flu treatment. We proposed a novel study strategy for future studies on the molecular processes of GHQWG in flu treatment. Furthermore, the possible active components provide a dependable source for flu drug screening.


Subject(s)
Drugs, Chinese Herbal , Influenza, Human , Molecular Docking Simulation , Molecular Dynamics Simulation , Network Pharmacology , Protein Interaction Maps , Humans , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/virology , Protein Interaction Maps/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use
9.
J Dairy Sci ; 107(10): 7520-7532, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38851582

ABSTRACT

Bacillus licheniformis is one of the major spore-forming bacteria with great genotypic diversity in raw milk, dairy ingredients, and final dairy products; it is found throughout the dairy-processing continuum. Although being widely used as a probiotic strain, this species also serves as a potential risk in the dairy industry based on its roles in foodborne illness and dairy spoilage. Biofilm formation of B. licheniformis, combined with the heat resistance of its spores, make it impossible to prevent the presence of B. licheniformis in final dairy products by using traditional cleaning and disinfection procedures. Despite the extensive efforts to identify B. licheniformis in various dairy samples, no reviews have been written on both hazards and benefits of this sporeformer. This review discusses the prevalence of B. licheniformis from raw milk to commercial dairy products, biofilm formation and spoilage potential of B. licheniformis, and possible prevention methods. In addition, the potential benefits of B. licheniformis in the dairy industry are also summarized.


Subject(s)
Bacillus licheniformis , Dairy Products , Milk , Animals , Milk/microbiology , Dairy Products/microbiology , Dairying , Biofilms , Probiotics , Food Microbiology , Spores, Bacterial
10.
Ageing Res Rev ; 99: 102363, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838785

ABSTRACT

The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.


Subject(s)
Mental Disorders , Humans , Mental Disorders/physiopathology , Mental Disorders/therapy , Animals , Basolateral Nuclear Complex/physiology , Basolateral Nuclear Complex/physiopathology
11.
Neuropharmacology ; 257: 110032, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38852839

ABSTRACT

The full mechanism of action of propofol, a commonly administered intravenous anesthetic drug in clinical practice, remains elusive. The focus of this study was the role of GABAergic neurons which are the main neuron group in the ventral pallidum (VP) closely associated with anesthetic effects in propofol anesthesia. The activity of VP GABAergic neurons following propofol anesthesia in Vgat-Cre mice was observed via detecting c-Fos immunoreactivity by immunofluorescence and western blotting. Subsequently, chemogenetic techniques were employed in Vgat-Cre mice to regulate the activity of VP GABAergic neurons. The role of VP GABAergic neurons in generating the effects of general anesthesia induced by intravenous propofol was further explored through behavioral tests of the righting reflex. The results revealed that c-Fos expression in VP GABAergic neurons in Vgat-Cre mice dramatically decreased after propofol injection. Further studies demonstrated that chemogenetic activation of VP GABAergic neurons during propofol anesthesia shortened the duration of anesthesia and promoted wakefulness. Conversely, the inhibition of VP GABAergic neurons extended the duration of anesthesia and facilitated the effects of anesthesia. The results obtained in this study suggested that regulating the activity of GABAergic neurons in the ventral pallidum altered the effect of propofol on general anesthesia.


Subject(s)
Anesthesia, General , Anesthetics, Intravenous , Basal Forebrain , GABAergic Neurons , Propofol , Propofol/pharmacology , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Animals , Basal Forebrain/drug effects , Anesthetics, Intravenous/pharmacology , Anesthesia, General/methods , Mice , Male , Mice, Transgenic , Proto-Oncogene Proteins c-fos/metabolism , Reflex, Righting/drug effects , Reflex, Righting/physiology , Wakefulness/drug effects , Wakefulness/physiology , Mice, Inbred C57BL , Vesicular Inhibitory Amino Acid Transport Proteins
12.
Heliyon ; 10(9): e30336, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707272

ABSTRACT

Adults with spinal cord injury (SCI), a destructive neurological injury, have a significantly higher incidence of osteoarthritis (OA), a highly prevalent chronic joint disorder. This study aimed to dissect the neuroimmune-related regulatory mechanisms of SCI and OA using bioinformatics analysis. Using microarray data from the Gene Expression Omnibus database, differentially expressed genes (DEGs) were screened between SCI and sham samples and between OA and control samples. Common DEGs were used to construct a protein-protein interaction (PPI) network. Weighted gene co-expression network analysis (WGCNA) was used to mine SCI- and OA-related modules. Shared miRNAs were identified, and target genes were predicted using the Human MicroRNA Disease Database (HMDD) database. A miRNA-gene-pathway regulatory network was constructed with overlapping genes, miRNAs, and significantly enriched pathways. Finally, the expression of the identified genes and miRNAs was verified using RT-qPCR. In both the SCI and OA groups, 185 common DEGs were identified, and three hub clusters were obtained from the PPI network. WGCNA revealed three SCI-related modules and two OA-related modules. There were 43 overlapping genes between the PPI network clusters and the WGCNA network modules. Seventeen miRNAs shared between patients with SCI and OA were identified. A regulatory network consisting of five genes, six miRNAs, and six signaling pathways was constructed. Upregulation of CD44, TGFBR1, CCR5, and IGF1, while lower levels of miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p in both SCI and OA were successfully verified using RT-qPCR. Our study suggests that a miRNA-gene-pathway network is implicated in the neuroimmune-related regulatory mechanisms of SCI and OA. CD44, TGFBR1, CCR5, and IGF1, and their related miRNAs (miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p) may serve as promising biomarkers and candidate therapeutic targets for SCI and OA.

13.
Mil Med Res ; 11(1): 28, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711073

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored. METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats. RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes. CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.


Subject(s)
Cell Cycle Proteins , Glutamine , Intervertebral Disc Degeneration , Mannose , Intervertebral Disc Degeneration/drug therapy , Mannose/pharmacology , Mannose/therapeutic use , Animals , Rats , Glutamine/pharmacology , Glutamine/metabolism , Male , Rats, Sprague-Dawley , Humans , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism
14.
Appl Microbiol Biotechnol ; 108(1): 345, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801527

ABSTRACT

The emergence and quick spread of the plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 have posed a great threat to public health and raised global concerns. It is imperative to develop rapid and accurate detection systems for the onsite surveillance of mcr-1 and tet(X4). In this study, we developed one-tube recombinase polymerase amplification (RPA) and CRISPR-Cas12b integrated mcr-1 and tet(X4) detection systems. We identified mcr-1- and tet(X4)-conserved and -specific protospacers through a comprehensive BLAST search based on the NCBI nt database and used them for assembling the detection systems. Our developed one-tube RPA-CRISPR-Cas12b-based detection systems enabled the specific detection of mcr-1 and tet(X4) with a sensitivity of 6.25 and 9 copies within a detection time of ~ 55 and ~ 40 min, respectively. The detection results using pork and associated environmental samples collected from retail markets demonstrated that our developed mcr-1 and tet(X4) detection systems could successfully monitor mcr-1 and tet(X4), respectively. Notably, mcr-1- and tet(X4)-positive strains were isolated from the positive samples, as revealed using the developed detection systems. Whole-genome sequencing of representative strains identified an mcr-1-carrying IncI2 plasmid and a tet(X4)-carrying IncFII plasmid, which are known as important vectors for mcr-1 and tet(X4) transmission, respectively. Taken together, our developed one-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems show promising potential for the onsite detection of mcr-1 and tet(X4). KEY POINTS: • One-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems were developed based on identified novel protospacers. • Both detection systems exhibited high sensitivity and specification with a sample-to-answer time of less than 1 h. • The detection systems show promising potential for onsite detection of mcr-1 and tet(X4).


Subject(s)
CRISPR-Cas Systems , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Plasmids/genetics , Drug Resistance, Bacterial/genetics , Swine , Animals , Colistin/pharmacology , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Anti-Bacterial Agents/pharmacology
15.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783169

ABSTRACT

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Subject(s)
Brain-Derived Neurotrophic Factor , CA1 Region, Hippocampal , Down-Regulation , Neuronal Plasticity , Neurons , Postoperative Cognitive Complications , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Neurons/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/etiology , CA1 Region, Hippocampal/metabolism , Male , Mice, Inbred C57BL , Long-Term Potentiation , Glutamic Acid/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology
16.
Vet Res ; 55(1): 58, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715081

ABSTRACT

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Subject(s)
Apoptosis , HN Protein , NF-kappa B , Newcastle Disease , Newcastle disease virus , Newcastle disease virus/physiology , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Animals , HN Protein/genetics , HN Protein/metabolism , Newcastle Disease/virology , NF-kappa B/metabolism , Poultry Diseases/virology , Chickens , Chick Embryo
17.
Front Immunol ; 15: 1357475, 2024.
Article in English | MEDLINE | ID: mdl-38576616

ABSTRACT

Background and Objective: Post-translational modifications of antibodies, with a specific focus on galactosylation, have garnered increasing attention in the context of understanding the pathogenesis and therapeutic implications of autoimmune diseases. However, the comprehensive scope and the clinical significance of antibody galactosylation in the context of Neuromyelitis Optica Spectrum Disorder (NMOSD) remain enigmatic.The primary aim of this research was to discern disparities in serum IgG galactosylation levels between individuals in the acute stage of NMOSD relapse and their age- and sex-matched healthy counterparts. Methods: A total of fourteen untreated NMOSD patients experiencing an acute relapse phase, along with thirteen patients under medication, were enrolled, and an additional twelve healthy controls of the same age and gender were recruited for this investigation. Western blot and lectin enzyme techniques were used to determine the level of IgG galactosylation in the serum samples from these subjects. The expression of CD45+, CD3+, CD3+CD4+, CD3+CD8+, CD19+, and CD16+CD56+ in peripheral blood leukocytes was measured by flow cytometry. The enzyme-linked immunosorbent assay (ELISA) was also used to quantify the amounts of IgG. Magnetic particle luminescence assays are used to detect cytokines. Robust statistical analysis was executed to ascertain the potential associations between IgG galactosylation and the aforementioned immune indices. Results: In the context of NMOSD relapses, serum IgG galactosylation exhibited a notable decrease in untreated patients (0.2482 ± 0.0261), while it remained comparatively stable in medicated patients when contrasted with healthy controls (0.3625 ± 0.0259) (p=0.0159). Furthermore, a noteworthy inverse correlation between serum IgG galactosylation levels and the Expanded Disability Status Scale (EDSS) score during NMOSD relapse was observed (r=-0.4142; p=0.0317). Notably, IgG galactosylation displayed an inverse correlation with NMOSD relapse among peripheral blood CD45+, CD3+, CD3+CD8+, CD19+ cells, as well as with IL-6 and IL-8. Nevertheless, it was not determined whether IgG galactosylation and CD3+CD4+ T cells or other cytokines are statistically significantly correlated. Conclusion: Our research identified reduced IgG galactosylation in the serum of NMOSD patients during relapses, significantly correlated with disease severity, thereby providing a novel target for the diagnosis and treatment of NMOSD in the realm of medical research.


Subject(s)
Neuromyelitis Optica , Humans , Inflammation , Cytokines , Immunoglobulin G , Recurrence
18.
Foodborne Pathog Dis ; 21(7): 416-423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629721

ABSTRACT

Plasmid-mediated quinolone resistance (PMQR) genes and mobile colistin resistance (MCR) genes in Escherichia coli (E. coli) have been widely identified, which is considered a global threat to public health. In the present study, we conducted an analysis of MCR genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) and PMQR genes [qnrA, qnrB, qnrC, qnrD, qnrE1, qnrVC, qnrS, aac(6')-Ib-cr, qepA, and oqxAB] in E. coli from China, 1993-2019. From the 3,663 E. coli isolates examined, 1,613 (44.0%) tested positive for PMQR genes, either individually or in combination. Meanwhile, 262 isolates (7.0%) carried the MCR genes. Minimum inhibitory concentration (MIC) analyses of 17 antibiotics for the MCR gene-carrying strains revealed universal multidrug resistance. Resistance to polymyxin varied between 4 µg/mL and 64 µg/mL, with MIC50 and MIC90 at 8 µg/mL and 16 µg/mL, respectively. In addition, fluctuations in the detection rates of these resistant genes correlated with the introduction of antibiotic policies, host origin, temporal trends, and geographical distribution. Continuous surveillance of PMQR and MCR variants in bacteria is required to implement control and prevention strategies.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Resistance, Bacterial , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Quinolones , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Colistin/pharmacology , Plasmids/genetics , China , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Humans , Drug Resistance, Multiple, Bacterial/genetics , Animals
19.
Biomedicines ; 12(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672259

ABSTRACT

Tendinopathy is a prevalent condition in orthopedics patients, exerting a profound impact on tendon functionality. However, its underlying mechanism remains elusive and the efficacy of pharmacological interventions continues to be suboptimal. Verapamil is a clinically used medicine with anti-inflammation and antioxidant functions. This investigation aimed to elucidate the impact of verapamil in tendinopathy and the underlying mechanisms through which verapamil ameliorates the severity of tendinopathy. In in vitro experiments, primary tenocytes were exposed to interleukin-1 beta (IL-1ß) along with verapamil at a concentration of 5 µM. In addition, an in vivo rat tendinopathy model was induced through the localized injection of collagenase into the Achilles tendons of rats, and verapamil was injected into these tendons at a concentration of 5 µM. The in vitro findings highlighted the remarkable ability of verapamil to attenuate extracellular matrix degradation and apoptosis triggered by inflammation in tenocytes stimulated by IL-1ß. Furthermore, verapamil was observed to significantly suppress the inflammation-related MAPK/NFκB pathway. Subsequent investigations revealed that verapamil exerts a remediating effect on mitochondrial dysfunction, which was achieved through activation of the Nrf2/HO-1 pathway. Nevertheless, the protective effect of verapamil was nullified with the utilization of the Nrf2 inhibitor ML385. In summary, the in vivo and in vitro results indicate that the administration of verapamil profoundly mitigates the severity of tendinopathy through suppression of inflammation and activation of the Nrf2/HO-1 pathway. These findings suggest that verapamil is a promising therapeutic agent for the treatment of tendinopathy, deserving further and expanded research.

20.
Microorganisms ; 12(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38674616

ABSTRACT

In our previous microbiome profiling analysis, Lactobacillus (L.) johnsonii was suggested to contribute to resistance against chronic heat stress-induced diarrhea in weaned piglets. Forty-nine L. johnsonii strains were isolated from these heat stress-resistant piglets, and their probiotic properties were assessed. Strains N5 and N7 exhibited a high survival rate in acidic and bile environments, along with an antagonistic effect against Salmonella. To identify genes potentially involved in these observed probiotic properties, the complete genome sequences of N5 and N7 were determined using a combination of Illumina and nanopore sequencing. The genomes of strains N5 and N7 were found to be highly conserved, with two N5-specific and four N7-specific genes identified. Multiple genes involved in gastrointestinal environment adaptation and probiotic properties, including acidic and bile stress tolerance, anti-inflammation, CAZymes, and utilization and biosynthesis of carbohydrate compounds, were identified in both genomes. Comparative genome analysis of the two genomes and 17 available complete L. johnsonii genomes revealed 101 genes specifically harbored by strains N5 and N7, several of which were implicated in potential probiotic properties. Overall, this study provides novel insights into the genetic basis of niche adaptation and probiotic properties, as well as the genome diversity of L. johnsonii.

SELECTION OF CITATIONS
SEARCH DETAIL