Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(5): 112424, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37086405

ABSTRACT

Adipose-derived stem cells (ASCs) drive healthy visceral adipose tissue (VAT) expansion via adipocyte hyperplasia. Obesity induces ASC senescence that causes VAT dysfunction and metabolic disorders. It is challenging to restrain this process by biological intervention, as mechanisms of controlling VAT ASC senescence remain unclear. We demonstrate that a population of CX3CR1hi macrophages is maintained in mouse VAT during short-term energy surplus, which sustains ASCs by restraining their senescence, driving adaptive VAT expansion and metabolic health. Long-term overnutrition induces diminishment of CX3CR1hi macrophages in mouse VAT accompanied by ASC senescence and exhaustion, while transferring CX3CR1hi macrophages restores ASC reservoir and triggers VAT beiging to alleviate the metabolic maladaptation. Mechanistically, visceral ASCs attract macrophages via MCP-1 and shape their CX3CR1hi phenotype via exosomes; these macrophages relieve ASC senescence by promoting the arginase1-eIF5A hypusination axis. These findings identify VAT CX3CR1hi macrophages as ASC supporters and unravel their therapeutic potential for metabolic maladaptation to obesity.


Subject(s)
Adipocytes , Intra-Abdominal Fat , Animals , Mice , Intra-Abdominal Fat/metabolism , Adipocytes/metabolism , Macrophages/metabolism , Obesity/metabolism , Cellular Senescence , Adipose Tissue/metabolism , CX3C Chemokine Receptor 1/metabolism
2.
Front Cardiovasc Med ; 10: 1086603, 2023.
Article in English | MEDLINE | ID: mdl-36824459

ABSTRACT

The renin-angiotensin system (RAS) is a major classic therapeutic target for cardiovascular diseases. In addition to the circulating RAS, local tissue RAS has been identified in various tissues and plays roles in tissue inflammation and tissue fibrosis. (Pro)renin receptor (PRR) was identified as a new member of RAS in 2002. Studies have demonstrated the effects of PRR and its soluble form in local tissue RAS. Moreover, as an important part of vacuolar H+-ATPase, it also contributes to normal lysosome function and cell survival. Evidently, PRR participates in the pathogenesis of cardiovascular diseases and may be a potential therapeutic target of cardiovascular diseases. This review focuses on the effects of PRR and its soluble form on the physiological state, hypertension, myocardial ischemia reperfusion injury, heart failure, metabolic cardiomyopathy, and atherosclerosis. We aimed to investigate the possibilities and challenges of PRR and its soluble form as a new therapeutic target in cardiovascular diseases.

3.
Mol Nutr Food Res ; 65(19): e2100315, 2021 10.
Article in English | MEDLINE | ID: mdl-34363644

ABSTRACT

INTRODUCTION: Obesity causes many life-threatening diseases. It is important to develop effective approaches for obesity treatment. Oral supplementation with spermidine retards age-related processes, but its influences on obesity and various metabolic tissues remain largely unknow. This study aims to investigate the effects of oral spermidine on brown adipose tissue (BAT) and skeletal muscle as well as its roles in counteracting obesity and metabolic disorders. METHODS AND RESULTS: Spermidine is orally administrated into high-fat diet (HFD)-fed mice. The weight gain, insulin resistance, and hepatic steatosis are attenuated by oral spermidine in HFD-fed mice, accompanied by an alleviation of white adipose tissue inflammation. Oral spermidine promotes BAT activation and metabolic adaptation of skeletal muscle in HFD-fed mice, evidenced by UCP-1 induction and CREB activation in both tissues. Notably, oral spermidine upregulates tyrosine hydroxylase in hypothalamus of HFD-fed mice; spermidine treatment increases tyrosine hydroxylase expression and norepinephrine production in neurocytes, which leads to CREB activation and UCP-1 induction in brown adipocytes and myotubes. Spermidine also directly promotes UCP-1 and PGC-1α expression in brown adipocytes and myotubes. CONCLUSION: Spermidine serves as an oral supplement to attenuate obesity and metabolic disorders through hypothalamus-dependent or -independent BAT activation and skeletal muscle adaptation.


Subject(s)
Adipose Tissue, Brown/drug effects , Muscle, Skeletal/drug effects , Obesity/drug therapy , Spermidine/administration & dosage , Spermidine/pharmacology , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/metabolism , Administration, Oral , Animals , Diet, High-Fat/adverse effects , Hypothalamus/drug effects , Hypothalamus/metabolism , Insulin Resistance , Male , Mice, Inbred C57BL , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/etiology , Panniculitis/drug therapy , Panniculitis/etiology , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...