Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11392, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762587

ABSTRACT

Uniparental reproduction is advantageous when lack of mates limits outcrossing opportunities in plants. Baker's law predicts an enrichment of uniparental reproduction in habitats colonized via long-distance dispersal, such as volcanic islands. To test it, we analyzed reproductive traits at multiple hierarchical levels and compared seed-set after selfing and crossing experiments in both island and mainland populations of Limonium lobatum, a widespread species that Baker assumed to be self-incompatible because it had been described as pollen-stigma dimorphic, i.e., characterized by floral morphs differing in pollen-surface morphology and stigma-papillae shape that are typically self-incompatible. We discovered new types and combinations of pollen and stigma traits hitherto unknown in the literature on pollen-stigma dimorphism and a lack of correspondence between such combinations and pollen compatibility. Contrary to previous reports, we conclude that Limonium lobatum comprises both self-compatible and self-incompatible plants characterized by both known and previously undescribed combinations of reproductive traits. Most importantly, plants with novel combinations are overrepresented on islands, selfed seed-set is higher in islands than the mainland, and insular plants with novel pollen-stigma trait-combinations disproportionally contribute to uniparental reproduction on islands. Our results thus support Baker's law, connecting research on reproductive and island biology.


Subject(s)
Islands , Plumbaginaceae , Pollen , Pollination , Reproduction , Pollen/physiology , Reproduction/physiology , Plumbaginaceae/physiology , Pollination/physiology , Seeds/physiology , Flowers/physiology , Phenotype
2.
Front Plant Sci ; 11: 612258, 2020.
Article in English | MEDLINE | ID: mdl-33510756

ABSTRACT

The Mediterranean realm, comprising the Mediterranean and Macaronesian regions, has long been recognized as one of the world's biodiversity hotspots, owing to its remarkable species richness and endemism. Several hypotheses on biotic and abiotic drivers of species diversification in the region have been often proposed but rarely tested in an explicit phylogenetic framework. Here, we investigate the impact of both species-intrinsic and -extrinsic factors on diversification in the species-rich, cosmopolitan Limonium, an angiosperm genus with center of diversity in the Mediterranean. First, we infer and time-calibrate the largest Limonium phylogeny to date. We then estimate ancestral ranges and diversification dynamics at both global and regional scales. At the global scale, we test whether the identified shifts in diversification rates are linked to specific geological and/or climatic events in the Mediterranean area and/or asexual reproduction (apomixis). Our results support a late Paleogene origin in the proto-Mediterranean area for Limonium, followed by extensive in situ diversification in the Mediterranean region during the late Miocene, Pliocene, and Pleistocene. We found significant increases of diversification rates in the "Mediterranean lineage" associated with the Messinian Salinity Crisis, onset of Mediterranean climate, Plio-Pleistocene sea-level fluctuations, and apomixis. Additionally, the Euro-Mediterranean area acted as the major source of species dispersals to the surrounding areas. At the regional scale, we infer the biogeographic origins of insular endemics in the oceanic archipelagos of Macaronesia, and test whether woodiness in the Canarian Nobiles clade is a derived trait linked to insular life and a biotic driver of diversification. We find that Limonium species diversity on the Canary Islands and Cape Verde archipelagos is the product of multiple colonization events followed by in situ diversification, and that woodiness of the Canarian endemics is indeed a derived trait but is not associated with a significant shift to higher diversification rates. Our study expands knowledge on how the interaction between abiotic and biotic drivers shape the uneven distribution of species diversity across taxonomic and geographical scales.

3.
Ecol Evol ; 8(24): 12397-12424, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619554

ABSTRACT

Plumbaginaceae is characterized by a history of multiple taxonomic rearrangements and lacks a broad molecular phylogenetic framework. Limonium is the most species-rich genus of the family with ca. 600 species and cosmopolitan distribution. Its center of diversity is the Mediterranean region, where ca. 70% of all Limonium species are endemic. In this study, we sample 201 Limonium species covering all described infrageneric entities and spanning its wide geographic range, along with 64 species of other Plumbaginaceae genera, representing 23 out of 29 genera of the family. Additionally, 20 species of the sister family Polygonaceae were used as outgroup. Sequences of three chloroplast (trnL-F, matK, and rbcL) and one nuclear (ITS) loci were used to infer the molecular phylogeny employing maximum likelihood and Bayesian analyses. According to our results, within Plumbaginoideae, Plumbago forms a non-monophyletic assemblage, with Plumbago europaea sister to Plumbagella, while the other Plumbago species form a clade sister to Dyerophytum. Within Limonioideae, Ikonnikovia is nested in Goniolimon, rejecting its former segregation as genus distinct from Goniolimon. Limonium is divided into two major clades: Limonium subg. Pteroclados s.l., including L. sect. Pteroclados and L. anthericoides, and L. subg. Limonium. The latter is divided into three well-supported subclades: the monospecific L. sect. Limoniodendron sister to a clade comprising a mostly non-Mediterranean subclade and a Mediterranean subclade. Our results set the foundation for taxonomic proposals on sections and subsections of Limonium, namely: (a) the newly described L. sect. Tenuiramosum, created to assign L. anthericoides at the sectional rank; (b) the more restricted circumscriptions of L. sect. Limonium (= L. sect. Limonium subsect. Genuinae) and L. sect. Sarcophyllum (for the Sudano-Zambezian/Saharo-Arabian clade); (c) the more expanded circumscription of L. sect. Nephrophyllum (including species of the L. bellidifolium complex); and (d) the new combinations for L. sect. Pruinosum and L. sect. Pteroclados subsect. Odontolepideae and subsect. Nobiles.

4.
Genetica ; 145(1): 91-104, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28108874

ABSTRACT

Oceanic archipelagos are typically rich in endemic taxa, because they offer ideal conditions for diversification and speciation in isolation. One of the most remarkable evolutionary radiations on the Canary Islands comprises the 16 species included in Limonium subsection Nobiles, all of which are subject to diverse threats, and legally protected. Since many of them are single-island endemics limited to one or a few populations, there exists a risk that a loss of genetic variation might limit their long-term survival. In this study, we used eight newly developed microsatellite markers to characterize the levels of genetic variation and inbreeding in L. macrophyllum, a species endemic to the North-east of Tenerife that belongs to Limonium subsection Nobiles. We detected generally low levels of genetic variation over all populations (H T = 0.363), and substantial differentiation among populations (F ST = 0.188; R ST = 0.186) coupled with a negligible degree of inbreeding (F = 0.042). Obligate outcrossing may have maintained L. macrophyllum relatively unaffected by inbreeding despite the species' limited dispersal ability and the genetic bottlenecks likely caused by a prolonged history of grazing. Although several factors still constitute a risk for the conservation of L. macrophyllum, the lack of inbreeding and the recent positive demographic trends observed in the populations of this species are factors that favour its future persistence.


Subject(s)
Genetic Variation , Genetics, Population , Plumbaginaceae/genetics , Reproductive Isolation , DNA, Plant , Genetic Loci , Geography , Inbreeding , Microsatellite Repeats
5.
AoB Plants ; 72015 May 04.
Article in English | MEDLINE | ID: mdl-25940203

ABSTRACT

Environmental sex determination (ESD) is present in several animal and plant lineages. Diverse factors such as temperature, light or water availability have been described as sex determinants in these organisms. Among plants, ferns frequently display ESD. This work compares the effect of different levels of water availability in two diploid species of the xerophytic fern genus Cheilanthes and in their derived tetraploid, and if they are sensitive to antheridiogen (i.e. maleness-inducing pheromone). Different watering regimes were applied to isolated gametophyte cultures of the three study species. Gametophyte survival, size, gender and sporophyte production were assessed after 13, 18 and 23 weeks of culture. Cultures combining spores and adult gametophytes were established to test the effect of antheridiogen. Isolated gametophytes had an asexual to female to bisexual sequence that did not depend upon the degree of soil moisture. Both gender expression and growth reduction in response to water scarcity of the allotetraploid were more similar to those of one of the diploid parents. In all watering regimes, survival was higher in the allotetraploid, suggesting hybrid vigour, whereas automixis rate was similar in the three species and reached ∼50 % at high moisture. This breeding system can ensure reproduction in the absence of males. In the three species, female gametophytes produced antheridiogens that enhanced maleness. This promotes a mixed mating system that could be favourable for ferns growing in xeric habitats.

6.
Appl Plant Sci ; 1(6)2013 Jun.
Article in English | MEDLINE | ID: mdl-25202556

ABSTRACT

PREMISE OF THE STUDY: We developed microsatellite markers for the endangered plant Primula boveana, the Sinai primrose, and assessed the cross-transferability of these markers to six related taxa. • METHODS AND RESULTS: DNA sequences containing microsatellites were isolated from a microsatellite-enriched library. We obtained successful amplification of 13 microsatellite primer pairs, seven of which were polymorphic in P. boveana. Eleven of these primers successfully cross-amplified to related taxa. • CONCLUSIONS: The markers reported herein will be useful to characterize the genetic diversity of the endangered P. boveana and to evaluate its mating system, and have the potential to be useful for similar studies in close relatives.

7.
Ann Bot ; 106(1): 149-55, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20495199

ABSTRACT

BACKGROUND AND AIMS: A previous study detected no allozyme diversity in Iberian populations of the buckler-fern Dryopteris aemula. The use of a more sensitive marker, such as microsatellites, was thus needed to reveal the genetic diversity, breeding system and spatial genetic structure of this species in natural populations. METHODS: Eight microsatellite loci for D. aemula were developed and their cross-amplification with other ferns was tested. Five polymorphic loci were used to characterize the amount and distribution of genetic diversity of D. aemula in three populations from the Iberian Peninsula and one population from the Azores. KEY RESULTS: Most microsatellite markers developed were transferable to taxa close to D. aemula. Overall genetic variation was low (H(T) = 0.447), but was higher in the Azorean population than in the Iberian populations of this species. Among-population genetic differentiation was high (F(ST) = 0.520). All loci strongly departed from Hardy-Weinberg equilibrium. In the population where genetic structure was studied, no spatial autocorrelation was found in any distance class. CONCLUSIONS: The higher genetic diversity observed in the Azorean population studied suggested a possible refugium in this region from which mainland Europe has been recolonized after the Pleistocene glaciations. High among-population genetic differentiation indicated restricted gene flow (i.e. lack of spore exchange) across the highly fragmented area occupied by D. aemula. The deviations from Hardy-Weinberg equilibrium reflected strong inbreeding in D. aemula, a trait rarely observed in homosporous ferns. The absence of spatial genetic structure indicated effective spore dispersal over short distances. Additionally, the cross-amplification of some D. aemula microsatellites makes them suitable for use in other Dryopteris taxa.


Subject(s)
Dryopteris/growth & development , Dryopteris/genetics , Genetic Variation/genetics , Microsatellite Repeats/genetics , Inbreeding
8.
Am J Bot ; 96(10): 1880-6, 2009 Oct.
Article in English | MEDLINE | ID: mdl-21622309

ABSTRACT

Studies on genetic diversity help us to unveil the evolutionary processes of species and populations and can explain several traits of diploid-polyploid complexes such as their distributions, their breeding systems, and the origin of polyploids. We examined the allozyme variation of Dryopteris aemula and D. oreades, diploid ferns with highly fragmented habitats, and the allotetraploid D. corleyi to (1) analyze the putative relationship between both diploids and the tetraploid, (2) compare the levels of genetic variation among species and determine their causes, and (3) assess the breeding system of these taxa. The allozymic pattern of D. corleyi confirms that it derived from D. aemula and D. oreades. The lack of genetic diversity in D. aemula, a species of lowland habitats, may be due to genetic drift associated with the contraction of populations in the last glaciation. By contrast, the alpine D. oreades had moderate intrapopulation genetic variation, which may derive from the expansion of populations during the last glaciation. In the latter species, low interpopulational variation suggested effective gene flow (spore exchange), and genotype frequencies in Hardy-Weinberg equilibrium indicated cross-fertilization of gametophytes. Evolutionary history appears to be an essential element in the interpretation of genetic variation of highly fragmented populations.

9.
Ann Bot ; 102(3): 353-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18567915

ABSTRACT

BACKGROUND AND AIMS: Several models predict that the establishment of polyploids within diploid populations is enhanced by non-random mating (i.e. selfing and assortative mating) of cytotypes and by a higher relative fitness of polyploids. This report assesses the role that antheridiogens (i.e. maleness-inducing pheromones) and intercytotype differences in growth rate have on polyploid performance. METHODS: Three buckler-fern species were studied: the allotetraploid Dryopteris corleyi and its diploid parents, D. aemula and D. oreades. In one experiment, gametophytes of these species were cultured under rich growth conditions to compare the timing of gametangia production. The substrata on which these gametophytes had grown were used as antheridiogen sources in a second experiment. The three species were combined as source and target of antheridiogen (i.e. nine species pairs). Timing of antheridia production and gametophyte size were determined after those antheridiogen treatments. KEY RESULTS: Under rich growth conditions the allotetraploid produced archegonia earlier than those of diploid parents. Female gametophytes of the three species produced antheridiogens that inhibited growth and favoured maleness both within and among species. Gametophyte size was similar in the three species but antheridia formed earlier in the allotetraploid. CONCLUSIONS: Unisexuality, promoted by non-specific antheridiogens, enhances random mating both within and among species. The resulting hybridization can favour the reproductive exclusion of the allopolyploid in sites where it is outnumbered by diploids. However, the earlier production of gametangia in the allotetraploid favours assortative mating and may thus counterbalance reproductive exclusion.


Subject(s)
Dryopteris/growth & development , Dryopteris/physiology , Germ Cells/growth & development , Polyploidy , Analysis of Variance , Diploidy , Dryopteris/genetics , Germ Cells/physiology , Hybridization, Genetic , Pheromones/physiology , Reproduction , Spores/physiology
10.
Am J Bot ; 94(6): 986-90, 2007 Jun.
Article in English | MEDLINE | ID: mdl-21636467

ABSTRACT

For many plants, sex is not fixed by genotype but determined by environmental conditions during development. In homosporous pteridophytes, sex is environmentally determined by the presence or absence of antheridiogens, maleness-inducing pheromones. It has been proposed that antheridiogens primarily reduce growth rate, with small gametophyte size responsible for maleness. To test this hypothesis, the effects of antheridiogen and intergametophytic competition on gender expression and gametophyte size were studied in a culture experiment with Woodwardia radicans. We found that (1) antheridiogen inhibited growth of gametophytes; and (2) slow growth favored maleness, whereas fast growth favored femaleness, irrespective of the presence or absence of antheridiogen. Both conclusions are consistent with the hypothesis that, in W. radicans, antheridiogen effect is mediated by size. They also agree with the "size-advantage" hypothesis in which energetic limitations associated with relatively small individual size impose a less severe limitation for male reproductive success than for female reproductive success. The results are also discussed with regard to a genetic sex-determining pathway that has recently been identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...