Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 169: 112887, 2023 07.
Article in English | MEDLINE | ID: mdl-37254335

ABSTRACT

Mass spectrometry has become the technique of choice for the assessment of a high variety of molecules in complex food matrices. It is best suited for monitoring the evolution of digestive processes in vivo and in vitro. However, considering the variety of equipment available in different laboratories and the diversity of sample preparation methods, instrumental settings for data acquisition, statistical evaluations, and interpretations of results, it is difficult to predict a priori the ideal parameters for optimal results. The present work addressed this uncertainty by executing an inter-laboratory study with samples collected during in vitro digestion and presenting an overview of the state-of-the-art mass spectrometry applications and analytical capabilities available for studying food digestion. Three representative high-protein foods - skim milk powder (SMP), cooked chicken breast and tofu - were digested according to the static INFOGEST protocol with sample collection at five different time points during gastric and intestinal digestion. Ten laboratories analysed all digesta with their in-house equipment and applying theirconventional workflow. The compiled results demonstrate in general, that soy proteins had a slower gastric digestion and the presence of longer peptide sequences in the intestinal phase compared to SMP or chicken proteins, suggesting a higher resistance to the digestion of soy proteins. Differences in results among the various laboratories were attributed more to the peptide selection criteria than to the individual analytical platforms. Overall, the combination of mass spectrometry techniques with suitable methodological and statistical approaches is adequate for contributing to the characterisation of the recently defined digestome.


Subject(s)
Digestion , Soybean Proteins , Animals , Soybean Proteins/metabolism , Milk/chemistry , Peptides/analysis , Mass Spectrometry
2.
Nutrients ; 15(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904065

ABSTRACT

It is known that casein hydrolysis accelerates gastrointestinal transit in comparison to intact casein, although the effect of the protein hydrolysis on the composition of the digests is not fully understood. The aim of this work is to characterize, at the peptidome level, duodenal digests from pigs, as a model of human digestion, fed with micellar casein and a previously described casein hydrolysate. In addition, in parallel experiments, plasma amino acid levels were quantified. A slower transit of nitrogen to the duodenum was found when the animals received micellar casein. Duodenal digests from casein contained a wider range of peptide sizes and a higher number of peptides above five amino acids long in comparison with the digests from the hydrolysate. The peptide profile was markedly different, and although ß-casomorphin-7 precursors were also found in hydrolysate samples, other opioid sequences were more abundant in the casein digests. Within the same substrate, the evolution of the peptide pattern at different time points showed minimal changes, suggesting that the protein degradation rate relies more on the gastrointestinal location than on digestion time. Higher plasma concentrations of methionine, valine, lysine and amino acid metabolites were found in animals fed with the hydrolysate at short times (<200 min). The duodenal peptide profiles were evaluated with discriminant analysis tools specific for peptidomics to identify sequence differences between both substrates that can be used for future human physiological and metabolic studies.


Subject(s)
Amino Acids , Caseins , Swine , Humans , Animals , Caseins/metabolism , Amino Acids/metabolism , Peptides/metabolism , Gastrointestinal Tract/metabolism
3.
Foods ; 10(4)2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33919642

ABSTRACT

Human milk proteins have shown to vary in concentration and distribution through lactation. However, while some regulatory components, such as hormones, have shown associations with regard to the mothers' body mass index, there is limited information on the possible influence of this condition on the whole protein distribution. The objective of this study was to evaluate the protein profile of human milk from normal weight and overweight or obese mothers to identify differences in protein expression in colostrum, transitional and mature milk. The mass spectrometry analysis showed the ability to class with a high degree of confidence the lactation state and the milk profile according to the mother's condition. Individual milk samples were subjected to a digestion in vitro model that takes into account the specificities of the gastrointestinal conditions of full-term newborn infants. The digestion products were compared with available data from the digestive contents in newborns. The behavior of the most abundant proteins and the overall peptide generation and survival, showed good correspondence with in vivo data.

SELECTION OF CITATIONS
SEARCH DETAIL
...