Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37562582

ABSTRACT

In fishes, the availability of taurine is regulated during ontogenetic development, where its endogenous synthesis capacity is species dependent. Thus, different pathways and involved enzymes have been described: pathway I (cysteine sulfinate-dependent pathway), cysteine dioxygenase type 1 (cdo1) and cysteine sulfinic acid decarboxylase (csad); pathway II (cysteic acid pathway), cdo1 and glutamic acid decarboxylase (gad); and pathway III (cysteamine pathway), 2-aminoethanethiol dioxygenase (ado); whereas taurine transporter (taut) is responsible for taurine entry into cells on the cell membrane and the mitochondria. This study determined if the tropical gar (Atractosteus tropicus), an ancient holostean fish model, has the molecular mechanism to synthesize taurine through the identification and analysis expression of transcripts coding for proteins involved in its biosynthesis and transportation, at different embryo-larvae stages and in different organs of juveniles (31 dah). We observed a fluctuating expression of all transcripts involved in the three pathways at all analyzed stages. All transcripts are expressed during the beginning of larval development; however, ado and taut show a peak expression at 9 dah, and all transcripts but csad decreased at 23 dah, when the organism ended the larval period. Furthermore, at 31 dah, we observed taut expression in all examined organs. The transcripts involved in pathways I and III are expressed differently across all organs, whereas pathway II was only observed in the brain, eye, and skin. The results suggested that taurine biosynthesis in tropical gar is regulated during its early development before first feeding, and the pathway might also be organ-type dependent.


Subject(s)
Carboxy-Lyases , Fishes , Animals , Fishes/metabolism , Larva/genetics , Larva/metabolism , Taurine/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism
2.
Article in English | MEDLINE | ID: mdl-34626804

ABSTRACT

Aquatic hypoxia is both a naturally-occurring and anthropogenically-generated event. Fish species have evolved different adaptations to cope with hypoxic environments, including gill modifications and air breathing. However, little is known about the molecular mechanisms involved in the respiration of embryonic and larval fishes during critical windows of development. We assessed expression of the genes hif-1α, fih-1, nhe1, epo, gr and il8 using the developing tropical gar as a piscine model during three developmental periods (fertilization to hatch, 1 to 6 days post hatch (dph) and 7 to 12 dph) when exposed to normoxia (~7.43 mg/L DO), hypoxia (~2.5 mg/L DO) or hyperoxia (~9.15 mg/L DO). All genes had higher expression when fish were exposed to either hypoxia or hyperoxia during the first two developmental periods. However, fish continuously exposed to hypoxia had increased expression of the six genes by hatching and 6 dph, and by 12 dph only hif-1α still had increased expression. The middle developmental period was the most hypoxia-sensitive, coinciding with several changes in physiology and morphology. The oldest larvae were the most resilient to gene expression change, with little variation in expression of the six genes compared. This study is the first to relate the molecular response of an air-breathing fish to oxygen availability to developmental critical windows and contributes to our understanding of some molecular responses of developing fish to changes in oxygen availability.


Subject(s)
Fish Diseases/genetics , Fishes/genetics , Hyperoxia/veterinary , Hypoxia/veterinary , Animals , Aquaculture , Erythropoietin/genetics , Female , Fish Diseases/physiopathology , Fish Proteins/genetics , Fishes/growth & development , Fishes/physiology , Gene Expression Regulation, Developmental , Hyperoxia/genetics , Hyperoxia/physiopathology , Hypoxia/genetics , Hypoxia/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Interleukin-8/genetics , Male , Receptors, Glucocorticoid/genetics , Respiratory Physiological Phenomena , Sodium-Hydrogen Exchanger 1/genetics
3.
Neotrop. ichthyol ; 19(1): e200095, 2021. graf
Article in English | VETINDEX, LILACS | ID: biblio-1287438

ABSTRACT

In the Southeast of Mexico, there are many native cichlids with commercial interest such as redhead cichlid (Vieja melanurus) and twoband cichlid (V. bifasciata), which have a great local demand and excellent meat quality. However, it is necessary to implement their culture based on nutrition studies and digestive biochemistry. This study's objective was to characterize these two cichlids' digestive proteases (pH, temperature, and inhibitors) through biochemistry techniques. Results showed that V. melanurus and V. bifasciata have a digestive capacity analogous to other omnivore fishes, where the optimal pH values of stomach proteases (4 and 2, respectively) and intestinal proteases (6 and 12, respectively), the optimal temperature of acid (35°C and 55°C, respectively) and alkaline proteases (45°C and 55°C, respectively) are quite similar. Both species presented high thermal and pH stabilities. Inhibition showed that V. melanurus is more sensitive to specific inhibitors for alkaline proteases than V. bifasciata. In conclusion, V. bisfasciata and V. melanurus have different digestive protease patterns. Both species can hydrolyze different protein ingredients to formulate a specific diet. Nevertheless, V. bifasciata is more resistant to the presence of inhibitors, which allow it to include vegetable proteins in its diet.(AU)


En el sureste de México, existen muchas especies de cíclidos nativos de interés comercial como el cíclido rojo (Vieja melanurus) y el cíclido de dos bandas (V. bifasciata), los cuales tienen una gran demanda local y tienen una excelente calidad de carne; sin embargo, es necesario implementar su cultivo con base en estudios de nutrición y bioquímica digestiva. El objetivo de este estudio fue caracterizar las proteasas digestivas (pH, temperatura e inhibidores) de estos dos cíclidos nativos mediante técnicas bioquímicas. Los resultados mostraron que V. melanurus y V. bifasciata tienen una capacidad digestiva similar a otros peces omnívoros, donde los valores óptimos de pH de proteasas estomacales (4 y 2, respectivamente) e intestinales (6 y 12, respectivamente), la temperatura óptima de proteasas ácidas (35°C y 55°C, respectivamente) y alcalinas (45°C y 55°C, respectivamente) son muy parecidas. Ambas especies presentaron alta estabilidad térmica y de pH. La inhibición mostró que V. melanurus es más sensible a inhibidores específicos de proteasas alcalinas que V. bifasciata. En conclusión, V. bisfasciata y V. melanurus tienen diferentes patrones de proteasas digestivas, pero ambas especies pueden hidrolizar diversos ingredientes proteicos para formular dietas específicas; sin embargo, V. bifasciata es más resistente a la presencia de inhibidores, lo que permitiría incluir proteínas vegetales en su dieta.(AU)


Subject(s)
Animals , Peptide Hydrolases , Perciformes/physiology , Digestive System Physiological Phenomena , Enzyme Inhibitors
4.
Fish Physiol Biochem ; 46(1): 145-155, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31707568

ABSTRACT

Trypsin gene (try) expression levels were quantified in different organs of wild and captive tropical gar (Atractosteus tropicus) adults, and changes in expression during initial ontogeny of the species were determined. RNA was extracted from the pancreas, and cDNA was synthesized and later amplified by endpoint PCR using oligonucleotides designed from different try sequences of fish registered in GenBank. Subsequently, specific oligonucleotides were designed from the partial sequences. Gene expression was measured after RNA extraction and synthesis of the cDNA of 11 organs (liver, pancreas, stomach, esophagus, intestine, pyloric caeca, brain, muscle, gills, gonad, and kidney) of captive and wild adults. Likewise, samples of A. tropicus larvae were taken on days 0 (embryo), 5, 10, 15, 20, 25, and 30 days after hatching (DAH), the RNA was extracted, and the synthesis of cDNA was carried out to measure real-time gene expression (qPCR). The results showed that the highest relative try expression occurred mainly in the esophagus, liver, stomach, and pancreas of both wild and captive adult fish; however, captive organisms had a higher try expression level than wild fish. Although try expression during initial ontogeny was high in embryos (0 DAH), it did not reach the maximum value until 15 DAH. It was concluded that try expression levels in captive adults are due to the high protein content in the balanced feed (trout diet). The highest try expression level during larviculture was detected at 15 DAH, which indicates that A. tropicus larvae have a mature digestive system and can efficiently hydrolyze proteins from feed at this developmental stage.


Subject(s)
Fish Proteins/genetics , Fishes/physiology , Trypsin/genetics , Animals , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...