Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Integr Genomics ; 22(6): 1467-1493, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36199002

ABSTRACT

Plant metabolomics studies haves revealed new bioactive compounds. However, like other omics disciplines, the generated data are not fully exploited, mainly because the commonly performed analyses focus on elucidating the presence/absence of distinctive metabolites (and/or their precursors) and not on providing a holistic view of metabolomic changes and their participation in organismal adaptation to biotic and abiotic stress conditions. Therefore, spectral libraries generated from Cecropia obtusifolia cell suspension cultures in a previous study were considered as a case study and were reanalyzed herein. These libraries were obtained from a time-course experiment under nitrate starvation conditions using both electrospray ionization modes. The applied methodology included the use of ecological analytical tools in a systematic four-step process, including a population analysis of metabolite α diversity, richness, and evenness (i); a chemometrics analysis to identify discriminant groups (ii); differential metabolic marker identification (iii); and enrichment analyses and annotation of active metabolic pathways enriched by differential metabolites (iv). Our species α diversity results referring to the diversity of metabolites represented by mass-to-charge ratio (m/z) values detected at a specific retention time (rt) (an uncommon way to analyze untargeted metabolomic data) suggest that the metabolome is dynamic and is modulated by abiotic stress. A total of 147 and 371 m/z_rt pairs was identified as differential markers responsive to nitrate starvation in ESI- and ESI+ modes, respectively. Subsequent enrichment analysis showed a high degree of completeness of biosynthetic pathways such as those of brassinosteroids, flavonoids, and phenylpropanoids.


Subject(s)
Metabolomics , Nitrates , Metabolomics/methods , Metabolome , Flavonoids/metabolism , Plants
2.
Plant Physiol Biochem ; 70: 318-24, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23811120

ABSTRACT

Avocado is one of the most important fruits in the world. Avocado "native mexicano" (Persea americana var. drymifolia) seeds are widely used in the propagation of this plant and are the primary source of rootstocks globally for a variety of avocado cultivars, such as the Hass avocado. Here, we report the isolation of 5005 ESTs from the 5' ends of P. americana var. drymifolia seed cDNA clones representing 1584 possible unigenes. These avocado seed ESTs were compared with the avocado flower EST library, and we detected several genes that are expressed either in both tissues or only in the seed. The snakin gene, which encodes an element of the innate immune response in plants, was one of those most frequently found among the seed ESTs, and this suggests that it is abundantly expressed in the avocado seed. We expressed the snakin gene in a heterologous system, namely the bovine endothelial cell line BVE-E6E7. Conditioned media from transfected BVE-E6E7 cells showed antimicrobial activity against strains of Escherichia coli and Staphylococcus aureus. This is the first study of the function of the snakin gene in plant seed tissue, and our observations suggest that this gene might play a protective role in the avocado seed.


Subject(s)
Expressed Sequence Tags/metabolism , Genes, Plant , Persea/genetics , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Proteins/genetics , Seeds/metabolism , Adaptation, Physiological/genetics , Animals , Anti-Infective Agents/metabolism , Cattle , Cell Line , DNA, Complementary , Escherichia coli , Flowers/metabolism , Gene Expression , Peptides/genetics , Peptides/metabolism , Persea/metabolism , Plant Proteins/metabolism , Staphylococcus
3.
Science ; 326(5956): 1078, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19965420

ABSTRACT

Maize domestication (Zea mays ssp. mays L.) resulted in a wide diversity of native landraces that represent an invaluable source of genetic information for exploring natural variation and genome evolution. We sequenced de novo the approximately 2-gigabase genome of the Mexican landrace Palomero Toluqueño (Palomero) and compared its features to those of the modern inbred line B73. We revealed differences concordant with its ancient origin and identified chromosomal regions of low nucleotide variability that contain domestication genes involved in heavy-metal detoxification. Our results indicate that environmental changes were important selective forces acting on maize domestication.


Subject(s)
Genes, Plant , Genome, Plant , Metals, Heavy/metabolism , Selection, Genetic , Zea mays/genetics , Zea mays/metabolism , Chromosome Mapping , Chromosomes, Plant/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Genetic Variation , Metals, Heavy/analysis , Metals, Heavy/toxicity , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Soil/analysis , Zea mays/growth & development
4.
BMC Genomics ; 10: 299, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-19580677

ABSTRACT

BACKGROUND: In-depth sequencing analysis has not been able to determine the overall complexity of transcriptional activity of a plant organ or tissue sample. In some cases, deep parallel sequencing of Expressed Sequence Tags (ESTs), although not yet optimized for the sequencing of cDNAs, has represented an efficient procedure for validating gene prediction and estimating overall gene coverage. This approach could be very valuable for complex plant genomes. In addition, little emphasis has been given to efforts aiming at an estimation of the overall transcriptional universe found in a multicellular organism at a specific developmental stage. RESULTS: To explore, in depth, the transcriptional diversity in an ancient maize landrace, we developed a protocol to optimize the sequencing of cDNAs and performed 4 consecutive GS20-454 pyrosequencing runs of a cDNA library obtained from 2 week-old Palomero Toluqueño maize plants. The protocol reported here allowed obtaining over 90% of informative sequences. These GS20-454 runs generated over 1.5 Million reads, representing the largest amount of sequences reported from a single plant cDNA library. A collection of 367,391 quality-filtered reads (30.09 Mb) from a single run was sufficient to identify transcripts corresponding to 34% of public maize ESTs databases; total sequences generated after 4 filtered runs increased this coverage to 50%. Comparisons of all 1.5 Million reads to the Maize Assembled Genomic Islands (MAGIs) provided evidence for the transcriptional activity of 11% of MAGIs. We estimate that 5.67% (86,069 sequences) do not align with public ESTs or annotated genes, potentially representing new maize transcripts. Following the assembly of 74.4% of the reads in 65,493 contigs, real-time PCR of selected genes confirmed a predicted correlation between the abundance of GS20-454 sequences and corresponding levels of gene expression. CONCLUSION: A protocol was developed that significantly increases the number, length and quality of cDNA reads using massive 454 parallel sequencing. We show that recurrent 454 pyrosequencing of a single cDNA sample is necessary to attain a thorough representation of the transcriptional universe present in maize, that can also be used to estimate transcript abundance of specific genes. This data suggests that the molecular and functional diversity contained in the vast native landraces remains to be explored, and that large-scale transcriptional sequencing of a presumed ancestor of the modern maize varieties represents a valuable approach to characterize the functional diversity of maize for future agricultural and evolutionary studies.


Subject(s)
Gene Expression Profiling/methods , Sequence Analysis, DNA/methods , Zea mays/genetics , Chromosome Mapping , DNA, Plant/genetics , Expressed Sequence Tags , Gene Library , Genes, Plant , Genome, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...