Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 256, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424112

ABSTRACT

The human brain is an extremely complex network of structural and functional connections that operate at multiple spatial and temporal scales. Investigating the relationship between these multi-scale connections is critical to advancing our comprehension of brain function and disorders. However, accurately predicting structural connectivity from its functional counterpart remains a challenging pursuit. One of the major impediments is the lack of public repositories that integrate structural and functional networks at diverse resolutions, in conjunction with modular transcriptomic profiles, which are essential for comprehensive biological interpretation. To mitigate this limitation, our contribution encompasses the provision of an open-access dataset consisting of derivative matrices of functional and structural connectivity across multiple scales, accompanied by code that facilitates the investigation of their interrelations. We also provide additional resources focused on neuro-genetic associations of module-level network metrics, which present promising opportunities to further advance research in the field of network neuroscience, particularly concerning brain disorders.


Subject(s)
Brain Mapping , Brain , Neural Pathways , Humans , Magnetic Resonance Imaging , Gene Expression Profiling
2.
NeuroRehabilitation ; 54(3): 359-371, 2024.
Article in English | MEDLINE | ID: mdl-38393927

ABSTRACT

BACKGROUND: Multiple Organ failure (MOF) is one of the main causes of admission to the Intensive Care Unit (ICU) of patients infected with COVID-19 and can cause short- and long-term neurological deficits. OBJECTIVE: To compare the cognitive functioning and functional brain connectivity at 6-12 months after discharge in two groups of individuals with MOF, one due to COVID-19 and the other due to another cause (MOF-group), with a group of Healthy Controls (HC). METHODS: Thirty-six participants, 12 from each group, underwent a neuropsychological and neuroimaging assessment at both time-points. Functional connectivity of the resting state networks was compared between COVID-19 and HC while controlling for the effect of MOF. The association between functional connectivity and neuropsychological performance was also investigated. RESULTS: Compared to the HC, COVID-19 group demonstrated hypoconnectivity between the Default Mode Network and Salience Network. This pattern was associated with worse performance on tests of attention and information processing speed, at both time-points. CONCLUSION: The study of the association between cognitive function and brain functional connectivity in COVID-19 allows the understanding of the short- and long-term neurological alterations of this disease and promotes the development of intervention programs to improve the quality of life for this understudied population.


Subject(s)
Brain , COVID-19 , Critical Illness , Magnetic Resonance Imaging , Humans , COVID-19/diagnostic imaging , COVID-19/physiopathology , Male , Female , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Aged , Cognition/physiology , Neuropsychological Tests , Adult , Multiple Organ Failure/physiopathology , Multiple Organ Failure/etiology , Multiple Organ Failure/diagnostic imaging , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Connectome
3.
Biol Psychiatry ; 94(10): 804-813, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37088169

ABSTRACT

BACKGROUND: There is little consensus and controversial evidence on anatomical alterations in the brains of people with autism spectrum disorder (ASD), due in part to the large heterogeneity present in ASD, which in turn is a major drawback for developing therapies. One strategy to characterize this heterogeneity in ASD is to cluster large-scale functional brain connectivity profiles. METHODS: A subtyping approach based on consensus clustering of functional brain connectivity patterns was applied to a population of 657 autistic individuals with quality-assured neuroimaging data. We then used high-resolution gene transcriptomic data to characterize the molecular mechanism behind each subtype by performing enrichment analysis of the set of genes showing a high spatial similarity with the profiles of functional connectivity alterations between each subtype and a group of typically developing control participants. RESULTS: Two major stable subtypes were found: subtype 1 exhibited hypoconnectivity (less average connectivity than typically developing control participants) and subtype 2, hyperconnectivity. The 2 subtypes did not differ in structural imaging metrics in any of the analyzed regions (68 cortical and 14 subcortical) or in any of the behavioral scores (including IQ, Autism Diagnostic Interview, and Autism Diagnostic Observation Schedule). Finally, only subtype 2, comprising about 43% of ASD participants, led to significant enrichments after multiple testing corrections. Notably, the dominant enrichment corresponded to excitation/inhibition imbalance, a leading well-known primary mechanism in the pathophysiology of ASD. CONCLUSIONS: Our results support a link between excitation/inhibition imbalance and functional connectivity alterations, but only in one ASD subtype, overall characterized by brain hyperconnectivity and major alterations in somatomotor and default mode networks.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neural Pathways/diagnostic imaging
4.
Sci Rep ; 12(1): 22400, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575263

ABSTRACT

Beyond the characteristics of a brain lesion, such as its etiology, size or location, lesion network mapping (LNM) has shown that similar symptoms after a lesion reflects similar dis-connectivity patterns, thereby linking symptoms to brain networks. Here, we extend LNM by using a multimodal strategy, combining functional and structural networks from 1000 healthy participants in the Human Connectome Project. We apply multimodal LNM to a cohort of 54 stroke patients with the aim of predicting sensorimotor behavior, as assessed through a combination of motor and sensory tests. Results are two-fold. First, multimodal LNM reveals that the functional modality contributes more than the structural one in the prediction of sensorimotor behavior. Second, when looking at each modality individually, the performance of the structural networks strongly depended on whether sensorimotor performance was corrected for lesion size, thereby eliminating the effect that larger lesions generally produce more severe sensorimotor impairment. In contrast, functional networks provided similar performance regardless of whether or not the effect of lesion size was removed. Overall, these results support the extension of LNM to its multimodal form, highlighting the synergistic and additive nature of different types of network modalities, and their corresponding influence on behavioral performance after brain injury.


Subject(s)
Brain Injuries , Connectome , Nervous System Diseases , Stroke , Humans , Brain Mapping , Stroke/diagnostic imaging , Brain/diagnostic imaging , Connectome/methods , Magnetic Resonance Imaging/methods
5.
Front Neurosci ; 16: 889725, 2022.
Article in English | MEDLINE | ID: mdl-35801180

ABSTRACT

Simultaneous mapping of multiple behavioral domains into brain networks remains a major challenge. Here, we shed some light on this problem by employing a combination of machine learning, structural and functional brain networks at different spatial resolutions (also known as scales), together with performance scores across multiple neurobehavioral domains, including sensation, motor skills, and cognition. Provided by the Human Connectome Project, we make use of three cohorts: 640 participants for model training, 160 subjects for validation, and 200 subjects for model performance testing thus enhancing prediction generalization. Our modeling consists of two main stages, namely dimensionality reduction in brain network features at multiple scales, followed by canonical correlation analysis, which determines an optimal linear combination of connectivity features to predict multiple behavioral performance scores. To assess the differences in the predictive power of each modality, we separately applied three different strategies: structural unimodal, functional unimodal, and multimodal, that is, structural in combination with functional features of the brain network. Our results show that the multimodal association outperforms any of the unimodal analyses. Then, to answer which human brain structures were most involved in predicting multiple behavioral scores, we simulated different synthetic scenarios in which in each case we completely deleted a brain structure or a complete resting state network, and recalculated performance in its absence. In deletions, we found critical structures to affect performance when predicting single behavioral domains, but this occurred in a lesser manner for prediction of multi-domain behavior. Overall, our results confirm that although there are synergistic contributions between brain structure and function that enhance behavioral prediction, brain networks may also be mutually redundant in predicting multidomain behavior, such that even after deletion of a structure, the connectivity of the others can compensate for its lack in predicting behavior.

6.
NPJ Parkinsons Dis ; 8(1): 64, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35637221

ABSTRACT

Heart rate variability (HRV) abnormalities are potential early biomarkers in Parkinson's disease (PD) but their relationship with central autonomic network (CAN) activity is not fully understood. We analyzed the synchronization between HRV and brain activity in 31 PD patients and 21 age-matched healthy controls using blood-oxygen-level-dependent (BOLD) signals from resting-state functional brain MRI and HRV metrics from finger plethysmography recorded for 7.40 min. We additionally quantified autonomic symptoms (SCOPA-AUT) and objective autonomic cardiovascular parameters (blood pressure and heart rate) during deep breathing, Valsalva, and head-up tilt, which were used to classify the clinical severity of dysautonomia. We evaluated HRV and BOLD signals synchronization (HRV-BOLD-sync) with Pearson lagged cross-correlations and Fisher's statistics for combining window-length-dependent HRV-BOLD-Sync Maps and assessed their association with clinical dysautonomia. HRV-BOLD-sync was lower significantly in PD than in controls in various brain regions within CAN or in networks involved in autonomic modulation. Moreover, heart-brain synchronization index (HBSI), which quantifies heart-brain synchronization at a single-subject level, showed an inverse exposure-response relationship with dysautonomia severity, finding the lowest HBSI in patients with severe dysautonomia, followed by moderate, mild, and, lastly, controls. Importantly, HBSI was associated in PD, but not in controls, with Valsalva pressure recovery time (sympathetic), deep breathing E/I ratio (cardiovagal), and SCOPA-AUT. Our findings support the existence of heart-brain de-synchronization in PD with an impact on clinically relevant autonomic outcomes.

7.
Sci Rep ; 12(1): 3988, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256728

ABSTRACT

Myotonic Dystrophy Type 1 (DM1) is a multisystemic disease that affects gray and white matter (WM) tissues. WM changes in DM1 include increased hyperintensities and altered tract integrity distributed in a widespread manner. However, the precise temporal and spatial progression of the changes are yet undetermined. MRI data were acquired from 8 adult- and late-onset DM1 patients and 10 healthy controls (HC) at two different timepoints over 9.06 years. Fractional anisotropy (FA) and mean diffusivity (MD) variations were assessed with Tract-Based Spatial Statistics. Transversal and longitudinal intra- and intergroup analyses were conducted, along with correlation analyses with clinical and neuropsychological data. At baseline, reduced FA and increased MD values were found in patients in the uncinate, anterior-thalamic, fronto-occipital, and longitudinal tracts. At follow-up, the WM disconnection was shown to have spread from the frontal part to the rest of the tracts in the brain. Furthermore, WM lesion burden was negatively correlated with FA values, while visuo-construction and intellectual functioning were positively correlated with global and regional FA values at follow-up. DM1 patients showed a pronounced WM integrity loss over time compared to HC, with a neurodegeneration pattern that suggests a progressive anterior-posterior disconnection. The visuo-construction domain stands out as the most sensitive neuropsychological measure for WM microstructural impairment.


Subject(s)
Myotonic Dystrophy , White Matter , Adult , Anisotropy , Brain/diagnostic imaging , Brain/pathology , Diffusion Tensor Imaging , Follow-Up Studies , Humans , Myotonic Dystrophy/diagnostic imaging , Myotonic Dystrophy/pathology , Neuropsychological Tests , White Matter/diagnostic imaging , White Matter/pathology
8.
Front Netw Physiol ; 2: 946380, 2022.
Article in English | MEDLINE | ID: mdl-36926060

ABSTRACT

During the performance of a specific task--or at rest--, the activity of different brain regions shares statistical dependencies that reflect functional connections. While these relationships have been studied intensely for positively correlated networks, considerably less attention has been paid to negatively correlated networks, a. k.a. anticorrelated networks (ACNs). Although the most celebrated of all ACNs is the default mode network (DMN), and has even been extensively studied in health and disease, for systematically all ACNs other than DMN, there is no comprehensive study yet. Here, we have addressed this issue by making use of three neuroimaging data sets: one of N = 192 healthy young adults to fully describe ACN, another of N = 40 subjects to compare ACN between two groups of young and old participants, and another of N = 1,000 subjects from the Human Connectome Project to evaluate the association between ACN and cognitive scores. We first provide a comprehensive description of the anatomical composition of all ACNs, each of which participated in distinct resting-state networks (RSNs). In terms of participation ranking, from highest to the lowest, the major anticorrelated brain areas are the precuneus, the anterior supramarginal gyrus and the central opercular cortex. Next, by evaluating a more detailed structure of ACN, we show it is possible to find significant differences in ACN between specific conditions, in particular, by comparing groups of young and old participants. Our main finding is that of increased anticorrelation for cerebellar interactions in older subjects. Finally, in the voxel-level association study with cognitive scores, we show that ACN has multiple clusters of significance, clusters that are different from those obtained from positive correlated networks, indicating a functional cognitive meaning of ACN. Overall, our results give special relevance to ACN and suggest their use to disentangle unknown alterations in certain conditions, as could occur in early-onset neurodegenerative diseases or in some psychiatric conditions.

9.
Neuropathol Appl Neurobiol ; 47(7): 1092-1108, 2021 12.
Article in English | MEDLINE | ID: mdl-33955002

ABSTRACT

AIM: To delineate the neurogenetic profiles of brain degeneration patterns in myotonic dystrophy type I (DM1). METHODS: In two cohorts of DM1 patients, brain maps of volume loss (VL) and neuropsychological deficits (NDs) were intersected to large-scale transcriptome maps provided by the Allen Human Brain Atlas (AHBA). For validation, neuropathological and RNA analyses were performed in a small series of DM1 brain samples. RESULTS: Twofold: (1) From a list of preselected hypothesis-driven genes, confirmatory analyses found that three genes play a major role in brain degeneration: dystrophin (DMD), alpha-synuclein (SNCA) and the microtubule-associated protein tau (MAPT). Neuropathological analyses confirmed a highly heterogeneous Tau-pathology in DM1, different to the one in Alzheimer's disease. (2) Exploratory analyses revealed gene clusters enriched for key biological processes in the central nervous system, such as synaptic vesicle recycling, localization, endocytosis and exocytosis, and the serotonin and dopamine neurotransmitter pathways. RNA analyses confirmed synaptic vesicle dysfunction. CONCLUSIONS: The combination of large-scale transcriptome interactions with brain imaging and cognitive function sheds light on the neurobiological mechanisms of brain degeneration in DM1 that might help define future therapeutic strategies and research into this condition.


Subject(s)
Brain/pathology , Dystrophin/metabolism , Myotonic Dystrophy/pathology , Synaptic Vesicles/pathology , tau Proteins/metabolism , Adult , Alzheimer Disease/pathology , Brain/metabolism , Central Nervous System/pathology , Female , Humans , Male , Middle Aged , Myotonic Dystrophy/genetics , Synaptic Vesicles/metabolism
10.
Ann Clin Transl Neurol ; 7(10): 1802-1815, 2020 10.
Article in English | MEDLINE | ID: mdl-32881379

ABSTRACT

OBJECTIVE: To characterize the progression of brain structural abnormalities in adults with pediatric and adult/late onset DM1, as well as to examine the potential predictive markers of such progression. METHODS: 21 DM1 patients (pediatric onset: N = 9; adult/late onset: N = 12) and 18 healthy controls (HC) were assessed longitudinally over 9.17 years through brain MRI. Additionally, patients underwent neuropsychological, genetic, and muscular impairment assessment. Inter-group comparisons of total and voxel-level regional brain volume were conducted through Voxel Based Morphometry (VBM); cross-sectionally and longitudinally, analyzing the associations between brain changes and demographic, clinical, and cognitive outcomes. RESULTS: The percentage of GM loss did not significantly differ in any of the groups compared with HC and when assessed independently, adult/late DM1 patients and their HC group suffered a significant loss in WM volume. Regional VBM analyses revealed subcortical GM damage in both DM1 groups, evolving to frontal regions in the pediatric onset patients. Muscular impairment and the outcomes of certain neuropsychological tests were significantly associated with follow-up GM damage, while visuoconstruction, attention, and executive function tests showed sensitivity to WM degeneration over time. INTERPRETATION: Distinct patterns of brain atrophy and its progression over time in pediatric and adult/late onset DM1 patients are suggested. Results indicate a possible neurodevelopmental origin of the brain abnormalities in DM1, along with the possible existence of an additional neurodegenerative process. Fronto-subcortical networks appear to be involved in the disease progression at young adulthood in pediatric onset DM1 patients. The involvement of a multimodal integration network in DM1 is discussed.


Subject(s)
Executive Function/physiology , Magnetic Resonance Imaging , Myotonic Dystrophy/pathology , Neurodegenerative Diseases/pathology , Adult , Atrophy/pathology , Disease Progression , Female , Follow-Up Studies , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuropsychological Tests , White Matter/pathology
11.
J Clin Med ; 9(4)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252256

ABSTRACT

Neuroimaging studies describing brain circuits' alterations in cobalamin (vitamin B12)-deficient patients are limited and have not been carried out in patients with inborn errors of cobalamin metabolism. The objective of this study was to assess brain functionality and brain circuit alterations in a patient with an ultra-rare inborn error of cobalamin metabolism, methylmalonic aciduria, and homocystinuria due to cobalamin D disease, as compared with his twin sister as a healthy control (HC). We acquired magnetic resonance imaging (including structural, functional, and diffusion images) to calculate brain circuit abnormalities and combined these results with the scores after a comprehensive neuropsychological evaluation. As compared with HC, the patient had severe patterns of damage, such as a 254% increment of ventricular volume, pronounced subcortical and cortical atrophies (mainly at striatum, cingulate cortex, and precuneus), and connectivity alterations at fronto-striato-thalamic circuit, cerebellum, and corpus callosum. In agreement with brain circuit alterations, cognitive deficits existed in attention, executive function, inhibitory control, and mental flexibility. This is the first study that provides the clinical, genetic, neuroanatomical, neuropsychological, and psychosocial characterization of a patient with the cobalamin D disorder, showing functional alterations in central nervous system motor tracts, thalamus, cerebellum, and basal ganglia, that, as far as we know, have not been reported yet in vitamin B12-related disorders.

12.
Neuroimage Clin ; 25: 102137, 2020.
Article in English | MEDLINE | ID: mdl-31931402

ABSTRACT

Multiorgan failure (MOF) is a life-threating condition that affects two or more systems of organs not involved in the disorder that motivates admission to an Intensive Care Unit (ICU). Patients who survive MOF frequently present long-term functional, neurological, cognitive, and psychiatric sequelae. However, the changes to the brain that explain such symptoms remain unclear. OBJECTIVE: To determine brain connectivity and cognitive functioning differences between a group of MOF patients six months after ICU discharge and healthy controls (HC). METHODS: 22 MOF patients and 22 HC matched by age, sex, and years of education were recruited. Both groups were administered a 3T magnetic resonance imaging (MRI), including structural T1 and functional BOLD, as well as a comprehensive neuropsychological evaluation that included tests of learning and memory, speed of information processing and attention, executive function, visual constructional abilities, and language. Voxel-based morphometry was used to analyses T1 images. For the functional data at rest, functional connectivity (FC) analyses were performed. RESULTS: There were no significant differences in structural imaging and neuropsychological performance between groups, even though patients with MOF performed worse in all the cognitive tests. Functional neuroimaging in the default mode network (DMN) showed hyper-connectivity towards sensory-motor, cerebellum, and visual networks. DMN connectivity had a significant association with the severity of MOF during ICU stay and with the neuropsychological scores in tests of attention and visual constructional abilities. CONCLUSIONS: In MOF patients without structural brain injury, DMN connectivity six months after ICU discharge is associated with MOF severity and neuropsychological impairment, which supports the use of resting-state functional MRI as a potential tool to predict the onset of long-term cognitive deficits in these patients. Similar to what occurs at the onset of other pathologies, the observed hyper-connectivity might suggest network re-adaptation following MOF.


Subject(s)
Brain/pathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Default Mode Network/pathology , Multiple Organ Failure/complications , Adult , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Cross-Sectional Studies , Default Mode Network/physiopathology , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged
13.
Front Comput Neurosci ; 13: 62, 2019.
Article in English | MEDLINE | ID: mdl-31551744

ABSTRACT

Metastability refers to the fact that the state of a dynamical system spends a large amount of time in a restricted region of its available phase space before a transition takes place, bringing the system into another state from where it might recur into the previous one. beim Graben and Hutt (2013) suggested to use the recurrence plot (RP) technique introduced by Eckmann et al. (1987) for the segmentation of system's trajectories into metastable states using recurrence grammars. Here, we apply this recurrence structure analysis (RSA) for the first time to resting-state brain dynamics obtained from functional magnetic resonance imaging (fMRI). Brain regions are defined according to the brain hierarchical atlas (BHA) developed by Diez et al. (2015), and as a consequence, regions present high-connectivity in both structure (obtained from diffusion tensor imaging) and function (from the blood-level dependent-oxygenation-BOLD-signal). Remarkably, regions observed by Diez et al. were completely time-invariant. Here, in order to compare this static picture with the metastable systems dynamics obtained from the RSA segmentation, we determine the number of metastable states as a measure of complexity for all subjects and for region numbers varying from 3 to 100. We find RSA convergence toward an optimal segmentation of 40 metastable states for normalized BOLD signals, averaged over BHA modules. Next, we build a bistable dynamics at population level by pooling 30 subjects after Hausdorff clustering. In link with this finding, we reflect on the different modeling frameworks that can allow for such scenarios: heteroclinic dynamics, dynamics with riddled basins of attraction, multiple-timescale dynamics. Finally, we characterize the metastable states both functionally and structurally, using templates for resting state networks (RSNs) and the automated anatomical labeling (AAL) atlas, respectively.

14.
Entropy (Basel) ; 20(10)2018 Sep 28.
Article in English | MEDLINE | ID: mdl-33265831

ABSTRACT

Interaction Information (II) generalizes the univariate Shannon entropy to triplets of variables, allowing the detection of redundant (R) or synergetic (S) interactions in dynamical networks. Here, we calculated II from functional magnetic resonance imaging data and asked whether R or S vary across brain regions and along lifespan. Preserved along lifespan, we found high overlapping between the pattern of high R and the default mode network, whereas high values of S were overlapping with different cognitive domains, such as spatial and temporal memory, emotion processing and motor skills. Moreover, we have found a robust balance between R and S among different age intervals, indicating informational compensatory mechanisms in brain networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...