Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Cancer Gene Ther ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806621

ABSTRACT

Acute myeloid leukemia (AML) is a malignant clonal hematopoietic disease with a poor prognosis. Understanding the interaction between leukemic cells and the tumor microenvironment (TME) can help predict the prognosis of leukemia and guide its treatment. Re-analyzing the scRNA-seq data from the CSC and G20 cohorts, using a Python-based pipeline including machine-learning-based scVI-tools, recapitulated the distinct hierarchical structure within the samples of AML patients. Weighted correlation network analysis (WGCNA) was conducted to construct a weighted gene co-expression network and to identify gene modules primarily focusing on hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and natural killer (NK) cells. The analysis revealed significant deregulation in gene modules associated with aerobic respiration and ribosomal/cytoplasmic translation. Cell-cell communications were elucidated by the CellChat package, revealing an imbalance of activating and inhibitory immune signaling pathways. Interception of genes upregulated in leukemic HSCs & MPPs as well as in NKG2A-high NK cells was used to construct prognostic models. Normal Cox and artificial neural network models based on 10 genes were developed. The study reveals the deregulation of mitochondrial and ribosomal genes in AML patients and suggests the co-occurrence of stimulatory and inhibitory factors in the AML TME.

2.
Cell Commun Signal ; 22(1): 211, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566191

ABSTRACT

The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Trans-Activators , Animals , Humans , Mice , Doxorubicin , E1A-Associated p300 Protein , Interleukin-3 , Interleukin-3 Receptor alpha Subunit , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Trans-Activators/metabolism
3.
Life Sci ; 343: 122527, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38417544

ABSTRACT

AIMS: RNA-binding proteins (RBPs) play pivotal roles in carcinogenesis and immunotherapy. Leucine-rich pentapeptide repeat-containing protein (LRPPRC) is crucial for RNA polyadenylation, transport, and stability. Although recent studies have suggested LRPPRC's potential role in tumor progression, its significance in tumor prognosis, diagnosis, and immunology remains unclear. MAIN METHODS: We comprehensively analyzed LRPPRC expression in tumors using various databases, including Human Transcriptome Cell Atlas (HTCA), University of California Santa Cruz (UCSC), Human Protein Atlas (HPA), Sangerbox, TISIDB, GeneMANIA, GSCALite, and CellMiner. We examined the correlation between LRPPRC expression level and prognosis, immune infiltration, immunotherapy, methylation, biological function, and drug sensitivity. Single-cell analysis was performed using Tumor Immune Single Cell Hub (TISCH) and CancerSEA software. Patients with acute myeloid leukemia (AML) were categorized based on LRPPRC levels for functional and immune infiltration analyses. The role of LRPPRC in cancer was validated using in vitro experiments. KEY FINDINGS: Our findings revealed that LRPPRC was highly expressed in almost all cancer types, indicating its significant prognostic and diagnostic potential. Notably, LRPPRC was associated with diverse immune features, such as immune cell infiltration, immune checkpoint genes, tumor mutational burden, and microsatellite instability, suggesting its value in guiding immunotherapy strategies. Within AML, the high-expression group had lower levels of immune cells, including CD8+ T cells. In vitro experiments confirmed the inhibitory effects of LRPPRC knockdown on AML cell proliferation. SIGNIFICANCE: This study highlights LRPPRC as a reliable pan-cancer prognostic and immune biomarker, particularly in AML. It lays the groundwork for future research on LRPPRC-targeted cancer therapies.


Subject(s)
Biomarkers, Tumor , Carcinogenesis , Leukemia, Myeloid, Acute , Humans , CD8-Positive T-Lymphocytes , Neoplasm Proteins , Prognosis
4.
Nat Struct Mol Biol ; 31(2): 219-231, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177680

ABSTRACT

Morphological rearrangement of the endoplasmic reticulum (ER) is critical for metazoan mitosis. Yet, how the ER is remodeled by the mitotic signaling remains unclear. Here, we report that mitotic Aurora kinase A (AURKA) employs a small GTPase, Rab1A, to direct ER remodeling. During mitosis, AURKA phosphorylates Rab1A at Thr75. Structural analysis demonstrates that Thr75 phosphorylation renders Rab1A in a constantly active state by preventing interaction with GDP-dissociation inhibitor (GDI). Activated Rab1A is retained on the ER and induces the oligomerization of ER-shaping protein RTNs and REEPs, eventually triggering an increase of ER complexity. In various models, from Caenorhabditis elegans and Drosophila to mammals, inhibition of Rab1AThr75 phosphorylation by genetic modifications disrupts ER remodeling. Thus, our study reveals an evolutionarily conserved mechanism explaining how mitotic kinase controls ER remodeling and uncovers a critical function of Rab GTPases in metaphase.


Subject(s)
Aurora Kinase A , Mitosis , Animals , Phosphorylation , Aurora Kinase A/metabolism , Signal Transduction , Endoplasmic Reticulum/metabolism , Mammals/metabolism
5.
Signal Transduct Target Ther ; 8(1): 275, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37463926

ABSTRACT

Cancer cell receives extracellular signal inputs to obtain a stem-like status, yet how tumor microenvironmental (TME) neural signals steer cancer stemness to establish the hierarchical tumor architectures remains elusive. Here, a pan-cancer transcriptomic screening for 10852 samples of 33 TCGA cancer types reveals that cAMP-responsive element (CRE) transcription factors are convergent activators for cancer stemness. Deconvolution of transcriptomic profiles, specification of neural markers and illustration of norepinephrine dynamics uncover a bond between TME neural signals and cancer-cell CRE activity. Specifically, neural signal norepinephrine potentiates the stemness of proximal cancer cells by activating cAMP-CRE axis, where ATF1 serves as a conserved hub. Upon activation by norepinephrine, ATF1 potentiates cancer stemness by coordinated trans-activation of both nuclear pluripotency factors MYC/NANOG and mitochondrial biogenesis regulators NRF1/TFAM, thereby orchestrating nuclear reprograming and mitochondrial rejuvenating. Accordingly, single-cell transcriptomes confirm the coordinated activation of nuclear pluripotency with mitochondrial biogenesis in cancer stem-like cells. These findings elucidate that cancer cell acquires stemness via a norepinephrine-ATF1 driven nucleus-mitochondria collaborated program, suggesting a spatialized stemness acquisition by hijacking microenvironmental neural signals.


Subject(s)
Neoplasms , Transcription Factors , Cell Nucleus/genetics , Cell Nucleus/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Norepinephrine/pharmacology , Norepinephrine/metabolism , Neoplasms/metabolism
6.
Int J Biol Sci ; 18(15): 5770-5786, 2022.
Article in English | MEDLINE | ID: mdl-36263173

ABSTRACT

Without an effective strategy for targeted therapy, glioblastoma is still incurable with a median survival of only 15 months. Both chronic inflammation and epigenetic reprogramming are hallmarks of cancer. However, the mechanisms and consequences of their cooperation in glioblastoma remain unknown. Here, we discover that chronic inflammation governs H3K27me3 reprogramming in glioblastoma through the canonical NF-κB pathway to target EZH2. Being a crucial mediator of chronic inflammation, the canonical NF-κB signalling specifically directs the expression and redistribution of H3K27me3 but not H3K4me3, H3K9me3 and H3K36me3. Using RNA-seq screening to focus on genes encoding methyltransferases and demethylases of histone, we identify EZH2 as a key methyltransferase to control inflammation-triggered epigenetic reprogramming in gliomagenesis. Mechanistically, NF-κB selectively drives the expression of EZH2 by activating its transcription, consequently resulting in a global change in H3K27me3 expression and distribution. Furthermore, we find that co-activation of NF-κB and EZH2 confers the poorest clinical outcome, and that the risk for glioblastoma can be accurately molecularly stratified by NF-κB and EZH2. It is notable that NF-κB can potentially cooperate with EZH2 in more than one way, and most importantly, we demonstrate a Synergistic effect of cancer cells induced by combinatory inhibition of NF-κB and EZH2, which both are frequently over-activated in glioblastoma. In summary, we uncover a functional cooperation between chronic inflammation and epigenetic reprogramming in glioblastoma, combined targeting of which by inhibitors guaranteed in safety and availability furnishes a potent strategy for effective treatment of this fatal disease.


Subject(s)
Glioblastoma , NF-kappa B , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Histones/genetics , Histones/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic/genetics , Inflammation/genetics , Cell Line, Tumor
8.
Sci Rep ; 12(1): 11181, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778451

ABSTRACT

Tumor immune microenvironment exerts a profound effect on the population of infiltrating immune cells. Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) is frequently overexpressed in a variety of cells, particularly during inflammation and tissue injury. However, its function in cancer and immunity remains enigmatic. In this study, we find that TIMP1 is substantially up-regulated during tumorigenesis through analyzing cancer bioinformatics databases, which is further confirmed by IHC tissue microarrays of clinical samples. The TIMP1 level is significantly increased in lymphocytes infiltrating the tumors and correlated with cancer progression, particularly in GBM. Notably, we find that the transcriptional factor Sp1 binds to the promoter of TIMP1 and triggers its expression in GBM. Together, our findings suggest that the Sp1-TIMP1 axis can be a potent biomarker for evaluating immune cell infiltration at the tumor sites and therefore, the malignant progression of GBM.


Subject(s)
Glioblastoma , Lymphocytes, Tumor-Infiltrating , Sp1 Transcription Factor , Tissue Inhibitor of Metalloproteinase-1 , Carcinogenesis , Cell Line, Tumor , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/immunology , Tissue Inhibitor of Metalloproteinase-1/biosynthesis , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/immunology , Tumor Microenvironment/immunology
9.
Adv Sci (Weinh) ; 9(27): e2200705, 2022 09.
Article in English | MEDLINE | ID: mdl-35896951

ABSTRACT

Aerobic glycolysis (Warburg effect), a hallmark of cancer, plays a critical role in cancer cell growth and metastasis; however, direct inhibition of the Warburg effect remains largely unknown. Herein, the transcription factor OVO-like zinc finger 2 (OVOL2) is demonstrated to directly repress the expression of several glycolytic genes, blocking the Warburg effect and breast tumor growth and metastasis in vitro and in vivo. OVOL2 inhibits glycolysis by recruiting the nuclear receptor co-repressor (NCoR) and histone deacetylase 3 (HDAC3). The tumor suppressor p53, a key regulator of cancer metabolism, activates OVOL2 by binding to the oncoprotein mouse double minute 2 homolog (MDM2) and inhibiting MDM2-mediated ubiquitination and degradation of OVOL2. OVOL2 expression is negatively correlated with glycolytic gene expression and can be a good predictor of prognosis in patients with breast cancer. Therefore, targeting the p53/MDM2/OVOL2 axis provides a potential avenue for cancer treatment, especially breast cancer.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Animals , Cell Line, Tumor , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Gene Expression , Glycolysis/genetics , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Signal Transduct Target Ther ; 7(1): 97, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35361747

ABSTRACT

Aberrant RNA splicing produces alternative isoforms of genes to facilitate tumor progression, yet how this process is regulated by oncogenic signal remains largely unknown. Here, we unveil that non-canonical activation of nuclear AURKA promotes an oncogenic RNA splicing of tumor suppressor RBM4 directed by m6A reader YTHDC1 in lung cancer. Nuclear translocation of AURKA is a prerequisite for RNA aberrant splicing, specifically triggering RBM4 splicing from the full isoform (RBM4-FL) to the short isoform (RBM4-S) in a kinase-independent manner. RBM4-S functions as a tumor promoter by abolishing RBM4-FL-mediated inhibition of the activity of the SRSF1-mTORC1 signaling pathway. Mechanistically, AURKA disrupts the binding of SRSF3 to YTHDC1, resulting in the inhibition of RBM4-FL production induced by the m6A-YTHDC1-SRSF3 complex. In turn, AURKA recruits hnRNP K to YTHDC1, leading to an m6A-YTHDC1-hnRNP K-dependent exon skipping to produce RBM4-S. Importantly, the small molecules that block AURKA nuclear translocation, reverse the oncogenic splicing of RBM4 and significantly suppress lung tumor progression. Together, our study unveils a previously unappreciated role of nuclear AURKA in m6A reader YTHDC1-dependent oncogenic RNA splicing switch, providing a novel therapeutic route to target nuclear oncogenic events.


Subject(s)
Alternative Splicing , Aurora Kinase A , Nerve Tissue Proteins , RNA Splicing Factors , RNA-Binding Proteins , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Cell Nucleus/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA Splicing , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
Theranostics ; 11(15): 7322-7336, 2021.
Article in English | MEDLINE | ID: mdl-34158853

ABSTRACT

Background: A large number of circular RNAs (circRNAs) have been discovered in the mammalian transcriptome with high abundance, which play vital roles in gene regulation, thereby participating in the development of multiple diseases. However, the biogenesis, regulation, and especially manipulation of circRNAs still remain largely unknown. Methods: Engineering circRNA regulators (ECRRs) were developed to promote circRNA biogenesis. Multiple circRNA mini-gene reporters were generated to evaluate the regulatory role of ECRRs. RT-PCR, qRT-PCR, northern blot, western blot, and flow cytometry assays were applied to assess the efficiency of artificial circRNA regulators on circRNA production in the presence or absence of RNase R treatment. Results: We engineered circRNA regulators by combining sequence-specific RNA binding motifs of human Pumilio 1 with functional domains that could form dimerization. We applied these engineered regulators to promote the circRNA production of the exogenous circRNA minigene reporter circGFP, thereby stimulating the functional GFP protein generation. Crucially, such regulation is in time-course dependent and dose-dependent manners with designed specificity. Moreover, the application of ECRRs could also stimulate circRNA biogenesis of another minigene reporter circScreen, suggesting that ECRRs can be commonly used to promote circRNA generation of exogenous reporters. Most importantly, ECRRs could be utilized to specifically promote the production of the endogenous circRNAs circ10720 and circBIRC6 as well. Conclusion: Our approach allows the creation of engineered regulators to target virtually any pre-mRNA in vivo, offering a novel avenue to investigate circRNA biogenesis and manipulate disease-related circRNA production.


Subject(s)
Gene Expression Regulation , Genetic Engineering , Nucleotide Motifs , RNA, Circular , RNA-Binding Proteins , Transcription Factors , HEK293 Cells , HeLa Cells , Humans , RNA, Circular/biosynthesis , RNA, Circular/genetics , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics
12.
Cell Death Discov ; 7(1): 21, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33483477

ABSTRACT

Significant advance has been made towards understanding glioblastoma metabolism through global metabolomic profiling. However, hitherto little is known about the role by which altered metabolism plays in driving the aggressive glioma phenotype. We have previously identified hypotaurine as one of the top-ranked metabolites for differentiating low- and high-grade tumors, and that there is also a strong association between the levels of intratumoral hypotaurine and expression of its biosynthetic enzyme, cysteamine (2-aminoethanethiol) dioxygenase (ADO). Using transcription profiling, we further uncovered that the ADO/hypotaurine axis targets CCL20 secretion through activating the NF-κB pathway to drive the self-renewal and maintenance of glioma 'cancer stem cells' or glioma cancer stem-like cells. Conversely, abrogating the ADO/hypotaurine axis using CRISPR/Cas9-mediated gene editing limited glioblastoma cell proliferation and self-renewal in vitro and tumor growth in vivo in an orthotopical mouse model, indicating that this metabolic pathway is a potential key therapeutic target. Collectively, our results unveil a targetable metabolic pathway, which contributes to the growth and progression of aggressive high-grade gliomas, as well as a novel predictive marker for glioblastoma diagnosis and therapy.

13.
Mol Cancer ; 19(1): 138, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32894144

ABSTRACT

BACKGROUND: Inactivation of the tumor suppressor p53 is critical for pathogenesis of glioma, in particular glioblastoma multiforme (GBM). MDM2, the main negative regulator of p53, binds to and forms a stable complex with p53 to regulate its activity. Hitherto, it is unclear whether the stability of the p53/MDM2 complex is affected by lncRNAs, in particular circular RNAs that are usually abundant and conserved, and frequently implicated in different oncogenic processes. METHODS: RIP-seq and RIP-qPCR assays were performed to determine the most enriched lncRNAs (including circular RNAs) bound by p53, followed by bioinformatic assays to estimate the relevance of their expression with p53 signaling and gliomagenesis. Subsequently, the clinical significance of CDR1as was evaluated in the largest cohort of Chinese glioma patients from CGGA (n = 325), and its expression in human glioma tissues was further evaluated by RNA FISH and RT-qPCR, respectively. Assays combining RNA FISH with protein immunofluorescence were performed to determine co-localization of CDR1as and p53, followed by CHIRP assays to confirm RNA-protein interaction. Immunoblot assays were carried out to evaluate protein expression, p53/MDM2 interaction and p53 ubiquitination in cells in which CDR1as expression was manipulated. After AGO2 or Dicer was knocked-down to inhibit miRNA biogenesis, effects of CDR1as on p53 expression, stability and activity were determined by immunoblot, RT-qPCR and luciferase reporter assays. Meanwhile, impacts of CDR1as on DNA damage were evaluated by flow cytometric assays and immunohistochemistry. Tumorigenicity assays were performed to determine the effects of CDR1as on colony formation, cell proliferation, the cell cycle and apoptosis (in vitro), and on tumor volume/weight and survival of nude mice xenografted with GBM cells (in vivo). RESULTS: CDR1as is found to bind to p53 protein. CDR1as expression decreases with increasing glioma grade and it is a reliable independent predictor of overall survival in glioma, particularly in GBM. Through a mechanism independent of acting as a miRNA sponge, CDR1as stabilizes p53 protein by preventing it from ubiquitination. CDR1as directly interacts with the p53 DBD domain that is essential for MDM2 binding, thus disrupting the p53/MDM2 complex formation. Induced upon DNA damage, CDR1as may preserve p53 function and protect cells from DNA damage. Significantly, CDR1as inhibits tumor growth in vitro and in vivo, but has little impact in cells where p53 is absent or mutated. CONCLUSIONS: Rather than acting as a miRNA sponge, CDR1as functions as a tumor suppressor through binding directly to p53 at its DBD region to restrict MDM2 interaction. Thus, CDR1as binding disrupts the p53/MDM2 complex to prevent p53 from ubiquitination and degradation. CDR1as may also sense DNA damage signals and form a protective complex with p53 to preserve p53 function. Therefore, CDR1as depletion may play a potent role in promoting tumorigenesis through down-regulating p53 expression in glioma. Our results broaden further our understanding of the roles and mechanism of action of circular RNAs in general and CDR1as in particular, and can potentially open up novel therapeutic avenues for effective glioma treatment.


Subject(s)
Glioblastoma/genetics , Proto-Oncogene Proteins c-mdm2/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DNA Damage/genetics , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/pathology , Humans , Mice , Transfection
14.
J Cell Physiol ; 235(10): 7344-7355, 2020 10.
Article in English | MEDLINE | ID: mdl-32180229

ABSTRACT

Glioblastoma (GBM) is the most malignant primary brain tumor in adults. Due to its invasive nature, it cannot be thoroughly eliminated. WD repeat domain 12 (WDR12) processes the 32S precursor rRNA but cannot affect the synthesis of the 45S/47S primary transcript. In this study, we found that WDR12 is highly expressed in GBM according to the analysis results of mRNA expression by The Cancer Genome Atlas database. The high expression level of WDR12 is dramatically related to shorter overall survival and reduced disease-free survival. Next, we knocked down WDR12 and found that knockdown of WDR12 promoted the apoptosis and inhibited the proliferation by cell biology experiments. Differential expression genes in gene-chip revealed that WDR12 knockdown mainly inhibited cell cycle. Finally, we also found that WDR12 is associated with PLK1 and EZH2 in cell proliferation of GBM. Resumptively, this report showed a possible evidence that WDR12 drove malignant behavior of GBM, whose expression may present a neoteric independent prognostic biomarker in GBM.


Subject(s)
Brain Neoplasms/genetics , Cell Cycle Proteins/genetics , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/genetics , Oncogenes/genetics , RNA-Binding Proteins/genetics , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Genomics/methods , Glioblastoma/pathology , Humans , Prognosis , RNA, Messenger/genetics
15.
Cell Death Dis ; 7(10): e2409, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27735937

ABSTRACT

Xeroderma pigmentosum group A (XPA)-binding protein 2 (XAB2) is a multi-functional protein that plays critical role in processes including transcription, transcription-coupled DNA repair, pre-mRNA splicing, homologous recombination and mRNA export. Microarray analysis on gene expression in XAB2 knockdown cells reveals that many genes with significant change in expression function in mitotic cell cycle regulation. Fluorescence-activated cell scanner analysis confirmed XAB2 depletion led to cell arrest in G2/M phase, mostly at prophase or prometaphase. Live cell imaging further disclosed that XAB2 knockdown induced severe mitotic defects including chromosome misalignment and defects in segregation, leading to mitotic arrest, mitotic catastrophe and subsequent cell death. Among top genes down-regulated by XAB2 depletion is mitotic motor protein centrosome-associated protein E (CENPE). Knockdown CENPE showed similar phenotypes to loss of XAB2, but CENPE knockdown followed by XAB2 depletion did not further enhance cell cycle arrest. Luciferase assay on CENPE promoter showed that overexpression of XAB2 increased luciferase activity, whereas XAB2 depletion resulted in striking reduction of luciferase activity. Further mapping revealed a region in CENPE promoter that is required for the transcriptional regulation by XAB2. Moreover, ChIP assay showed that XAB2 interacted with CENPE promoter. Together, these results support a novel function of XAB2 in mitotic cell cycle regulation, which is partially mediated by transcription regulation on CENPE.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation , Mitosis/genetics , Transcription Factors/metabolism , Transcription, Genetic , Cell Cycle Checkpoints/genetics , Cell Death/genetics , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation/genetics , DNA Breaks , Gene Deletion , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Humans , Microtubules/metabolism , Oligonucleotide Array Sequence Analysis , RNA Splicing Factors , Spindle Apparatus/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics
16.
Med Res Rev ; 36(6): 1036-1079, 2016 11.
Article in English | MEDLINE | ID: mdl-27406026

ABSTRACT

The Aurora kinase family is comprised of three serine/threonine kinases, Aurora-A, Aurora-B, and Aurora-C. Among these, Aurora-A and Aurora-B play central roles in mitosis, whereas Aurora-C executes unique roles in meiosis. Overexpression or gene amplification of Aurora kinases has been reported in a broad range of human malignancies, pointing to their role as potent oncogenes in tumorigenesis. Aurora kinases therefore represent promising targets for anticancer therapeutics. A number of Aurora kinase inhibitors (AKIs) have been generated; some of which are currently undergoing clinical evaluation. Recent studies have unveiled novel unexpected functions of Aurora kinases during cancer development and the mechanisms underlying the anticancer actions of AKIs. In this review, we discuss the most recent advances in Aurora-A kinase research and targeted cancer therapy, focusing on the oncogenic roles and signaling pathways of Aurora-A kinases in promoting tumorigenesis, the recent preclinical and clinical AKI data, and potential alternative routes for Aurora-A kinase inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/genetics , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Aurora Kinase A/metabolism , Humans , Molecular Targeted Therapy , Neoplasms/enzymology , Neoplasms/genetics , Oncogenes , Protein Kinase Inhibitors/administration & dosage
17.
Oncotarget ; 7(14): 18403-14, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26918340

ABSTRACT

Glioblastoma (GBM) is the most common malignant adult brain tumor generally associated with high level of cellular heterogeneity and a dismal prognosis. Long noncoding RNAs (lncRNAs) are emerging as novel mediators of tumorigenesis. Recently developed single-cell RNA-seq provides an unprecedented way for analysis of the cell-to-cell variability in lncRNA expression profiles. Here we comprehensively examined the expression patterns of 2,003 lncRNAs in 380 cells from five primary GBMs and two glioblastoma stem-like cell (GSC) lines. Employing the self-organizing maps, we displayed the landscape of the lncRNA expression dynamics for individual cells. Further analyses revealed heterogeneous nature of lncRNA in abundance and splicing patterns. Moreover, lncRNA expression variation is also ubiquitously present in the established GSC lines composed of seemingly identical cells. Through comparative analysis of GSC and corresponding differentiated cell cultures, we defined a stemness signature by the set of 31 differentially expressed lncRNAs, which can disclose stemness gradients in five tumors. Additionally, based on known classifier lncRNAs for molecular subtypes, each tumor was found to comprise individual cells representing four subtypes. Our systematic characterization of lncRNA expression heterogeneity lays the foundation for future efforts to further understand the function of lncRNA, develop valuable biomarkers, and enhance knowledge of GBM biology.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , RNA, Long Noncoding/genetics , Brain Neoplasms/pathology , Genetic Heterogeneity , Glioblastoma/pathology , Humans , Prognosis
18.
Tumour Biol ; 37(2): 1379-85, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26608368

ABSTRACT

The interaction between cancer and its microenvironment is crucial for survival and development of cancerous cells. Tumor microenvironment is usually under hypoxia, which promotes tumor aggressiveness like growth, angiogenesis, and metastasis. How cancer cells respond to hypoxia and the resultant impact on tumorigenesis are not yet fully explored. Long noncoding RNAs (lncRNAs) have been attracting more and more attention since their functions in regulating gene expression at chromatic, transcriptional, and posttranscriptional levels were found. lncRNAs are dysregulated in cancer and act as oncogenes or tumor suppressors. Moreover, emerging evidence has been provided that the expression of lncRNAs changes with the stimulus of hypoxia and they in turn produce a significant influence on the hypoxia-inducible factor (HIF), the most common transcription regulator in response to hypoxia. In this review, we discuss the recent findings of hypoxia-responsive lncRNAs and summarize their interaction with hypoxia to further understand their roles in cancer growth, metabolism, angiogenesis, and metastasis and their potential for cancer diagnosis and treatment.


Subject(s)
Carcinogenesis/genetics , Cell Hypoxia/physiology , Gene Expression Regulation, Neoplastic/physiology , RNA, Long Noncoding/physiology , Tumor Microenvironment/physiology , Animals , Cell Transformation, Neoplastic/genetics , Humans
19.
Oncotarget ; 5(23): 11909-23, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25481043

ABSTRACT

In this study, we identified ret finger protein-like 3 (RFPL3) as a hTERT promoter binding protein in lung cancer cells. The high hTERT promoter-binding activity of RFPL3 was detected in lung cancer cells compared to normal cells. Chromatin immunoprecipitation confirmed RFPL3 as a tumor-specific hTERT promoter binding protein. Overexpression of RFPL3 activated hTERT promoter and up-regulated hTERT expression and telomerase activity. Inhibition of RFPL3 expression by siRNA suppressed hTERT promoter activation and telomerase activity. Inhibition of RFPL3 by siRNA or shRNA also significantly inhibited tumor cell growth in vitro and in a xenograft mouse model in vivo. Immunohistochemical analysis of 181 human lung adenocarcinomas specimens showed a significant correlation between RFPL3 and hTERT expression. The overexpression of RFPL3 was also associated significantly with lymph node metastasis. Univariate and multivariate Cox model analyses of NSCLC clinical specimens revealed a strong correlation between RFPL3 expression and overall survival. These results demonstrate that RFPL3 is an important cellular factor which promotes lung cancer growth by activating hTERT expression and may be a potential novel therapeutic target for lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Carrier Proteins/metabolism , Gene Expression Regulation, Neoplastic/physiology , Lung Neoplasms/pathology , Telomerase/biosynthesis , Animals , Blotting, Western , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Cell Line, Tumor , Chromatin Immunoprecipitation , Enzyme-Linked Immunosorbent Assay , Heterografts , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Mice , Mice, Nude , Polymerase Chain Reaction , Proportional Hazards Models , Tissue Array Analysis , Transfection
20.
BMC Genomics ; 14: 830, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24274069

ABSTRACT

BACKGROUND: Cellular differentiation is characterized by the acquisition of specialized structures and functions, cell cycle exit, and global attenuation of the DNA damage response. It is largely unknown how these diverse cellular events are coordinated at the molecular level during differentiation. We addressed this question in a model system of neuroblastoma cell differentiation induced by HOXC9. RESULTS: We conducted a genome-wide analysis of the HOXC9-induced neuronal differentiation program. Microarray gene expression profiling revealed that HOXC9-induced differentiation was associated with transcriptional regulation of 2,370 genes, characterized by global upregulation of neuronal genes and downregulation of cell cycle and DNA repair genes. Remarkably, genome-wide mapping by ChIP-seq demonstrated that HOXC9 bound to 40% of these genes, including a large number of genes involved in neuronal differentiation, cell cycle progression and the DNA damage response. Moreover, we showed that HOXC9 interacted with the transcriptional repressor E2F6 and recruited it to the promoters of cell cycle genes for repressing their expression. CONCLUSIONS: Our results demonstrate that HOXC9 coordinates diverse cellular processes associated with differentiation by directly activating and repressing the transcription of distinct sets of genes.


Subject(s)
Cell Differentiation , Gene Silencing , Homeodomain Proteins/physiology , Neurons/physiology , Transcriptional Activation , Binding Sites , Cell Cycle/genetics , Cell Line, Tumor , DNA Repair/genetics , E2F6 Transcription Factor/metabolism , Genome, Human , Humans , Promoter Regions, Genetic , Protein Binding , Sequence Analysis, DNA , Transcription, Genetic , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...