Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 929: 172622, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642761

ABSTRACT

The phyllosphere is a vital yet often neglected habitat hosting diverse microorganisms with various functions. However, studies regarding how the composition and functions of the phyllosphere microbiome respond to agricultural practices, like nitrogen fertilization, are limited. This study investigated the effects of long-term nitrogen fertilization with different levels (CK, N90, N210, N330) on the functional genes and pathogens of the rice phyllosphere microbiome. Results showed that the relative abundance of many microbial functional genes in the rice phyllosphere was significantly affected by nitrogen fertilization, especially those involved in C fixation and denitrification genes. Different nitrogen fertilization levels have greater effects on fungal communities than bacteria communities in the rice phyllosphere, and network analysis and structural equation models further elucidate that fungal communities not only changed bacterial-fungal inter-kingdom interactions in the phyllosphere but also contributed to the variation of biogeochemical cycle potential. Besides, the moderate nitrogen fertilization level (N210) was associated with an enrichment of beneficial microbes in the phyllosphere, while also resulting in the lowest abundance of pathogenic fungi (1.14 %). In contrast, the highest abundance of pathogenic fungi (1.64 %) was observed in the highest nitrogen fertilization level (N330). This enrichment of pathogen due to high nitrogen level was also regulated by the fungal communities, as revealed through SEM analysis. Together, we demonstrated that the phyllosphere fungal communities were more sensitive to the nitrogen fertilization levels and played a crucial role in influencing phyllosphere functional profiles including element cycling potential and pathogen abundance. This study expands our knowledge regarding the role of phyllosphere fungal communities in modulating the element cycling and plant health in sustainable agriculture.


Subject(s)
Fertilizers , Fungi , Nitrogen , Oryza , Oryza/microbiology , Fungi/physiology , Mycobiome , Agriculture , Microbiota , Plant Leaves/microbiology
2.
Sci Total Environ ; 806(Pt 2): 150279, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34600205

ABSTRACT

The growing contamination of arsenic and plastics has severely effects on the soil fauna health, including shifts of gut microbiota community. A few studies have focused on effects of microplastics and metal(loid) in soil and fauna gut microbiome. However, the environmental effect of nanoplastics and arsenic on the earthworm gut microbiota, especially on arsenic biotransformation in the gut, remain largely unknown. Here, a microcosm study was performed to explore the effects of nanoplastics and arsenic on the microbiota characteristics in earthworm Metaphire vulgaris gut using Illumina high throughput sequencing, and to investigate changes in the gut microbiota-mediated arsenic biotransformation genes (ABGs) by using high-throughput quantitative PCR. Our results demonstrated that the concentration of arsenic in the earthworm body tissues after exposure to arsenic and nanoplastics was significantly lower from that with arsenic alone exposure. Moreover, the clearly different bacterial community was observed in the soil compared with the earthworm gut, which was dominated by Proteobacteria, Actinobacteria, and Firmicutes at phylum level. Arsenic exposure significantly disturbed bacterial community structure in the earthworm gut, but exposure to nanoplastics did not induce gut microbiota changes. More interestingly, nanoplastics can relieve adverse effect of arsenic on the gut microbiota possibly by adsorbing arsenic. In addition, a total of 16 ABGs were detected, and predominant genes involved in arsenic reduction and transport process were observed in the earthworm guts. In short, this study provides a new picture of the effects of nanoplastics and arsenic on the gut microbiota and arsenic biotransformation in soil fauna gut.


Subject(s)
Arsenic , Gastrointestinal Microbiome , Oligochaeta , Animals , Microplastics , Plastics , Soil
3.
Sci Total Environ ; 804: 149994, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34798714

ABSTRACT

Most ecosystem functions attributed to earthworms are mediated by their internal microbiomes, and these are sensitive to disturbances in the external environment. However, few studies have focused on the response of the earthworm gut microbiome to soil chronosequence. Here, we used 16S rRNA high-throughput sequencing and high-throughput quantitative PCR to investigate the variations in bacterial communities and functional gene abundance in earthworm (Lumbricina sp.) guts and upland soils under 700 years of cultivation. Our results indicated that 700 years of upland cultivation significantly shaped bacterial communities and increased functional traits of microbes in earthworm guts, which were more sensitive to cultivation age compared to the surrounding soils. The earthworm gut bacterial community changed rapidly over the first 300 years of cultivation and then changed slowly in the following centuries. Along with the cultivation age, we also observed that the earthworm gut microbiota was successive towards a copiotrophic strategy (e.g., Xanthobacteraceae, Nocardioidaceae, Hyphomicrobiaceae, and Bacillaceae) and higher potential functions (e.g., ureC, nirS, nosZ, phoD, and pqqC). Furthermore, canonical correspondence analysis further revealed that soil pH, C:N ratio, soil organic carbon, and total nitrogen were key abiotic drivers shaping earthworm gut bacterial communities. Taken together, this study reveals the succession of bacterial communities and potential functions in earthworm guts within 700 years of upland cultivation, which may provide a broader space for us to rationally exploit and utilize the interactions between soil and earthworm gut microbiotas to benefit the soil nutrient cycling process.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Oligochaeta , Animals , Carbon , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology
4.
Ecotoxicol Environ Saf ; 224: 112643, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34411817

ABSTRACT

The positive roles of earthworms on soil functionality has been extensively documented. The capacity of the earthworm gut microbiota on decomposition and nutrient cycling under long-term fertilization in field conditions has rarely been studied. Here, we report the structural, taxonomic, and functional responses of Eisenia foetida and Pheretima guillelmi gut microbiota to different fertilization regimes and durations using 16S rRNA gene-based Illumina sequencing and high-throughput quantitative PCR techniques. Our results revealed that the core gut microbiota, especially the fermentative bacteria were mainly sourced from the soil, but strongly stimulated with species-specificity, potential benefits for the host and soil health. The functional compositions of gut microbiota were altered by fertilization with fertilization duration being more influential than fertilization regimes. Moreover, the combination of organic and inorganic fertilization with the longer duration resulted in a higher richness and connectivity in the gut microbiota, and also their functional potential related to carbon (C), nitrogen, and phosphorus cycling, particularly the labile C decomposition, denitrification, and phosphate mobilization. We also found that long-term inorganic fertilization increased the abundance of pathogenic bacteria in the P. guillelmi gut. This study demonstrates that understanding earthworm gut microbiota can provide insights into how agricultural practices can potentially alter soil ecosystem functions through the interactions between soil and earthworm gut microbiotas.

5.
Sci Total Environ ; 703: 134977, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31757553

ABSTRACT

The optimization of more sustainable fertilization practice to relieve phosphorus (P) resource scarcity and increase P fertilizer utilization, a better understanding of the regulatory roles of microbes in P mobilization is urgently required to reduce P input. The genes phoD and pqqC are responsible for regulating organic and inorganic P mobilization, respectively. Using high-throughput sequencing, the corresponding bacterial communities harbored by these genes were determined. We conducted a 4-year rice-rice-crop rotation to investigate the responses of phoD- and pqqC-harboring bacterial communities to the partial replacement of inorganic P fertilizer by organic manure with reduced P input. The results showed that a combination of organic and inorganic fertilization maintained high rice yield, and also produced a more complex and stable phosphate mobilizing bacterial community, which contributed to phosphatase activities more than their gene abundances in the model analysis. Compared with the conventional mineral fertilization, organic-inorganic fertilization with the reduced P input slightly increased pqqC gene abundance while significantly enhanced the abundance of phoD-harboring bacteria, especially the genera Bradyrhizobium and Methylobacterium known as potential organic P mineralizers which can maintain high rice production. Moreover, the increased pH was the most impactful factor for the phoD- and pqqC-harboring bacterial communities, by promoting microbial P turnover and greatly increasing bioavailable P pools (H2O-Pi and NaHCO3-Pi, NaOH-Pi) in this P-deficient paddy soil. Hence, our study demonstrated that the partial replacement of mineral P with organic manure could reshape the inorganic phosphate solubilizing and alkaline-phosphomonoesterase encoding bacterial communities towards more resilient and effective to the high P utilization and productivity over intense cultivation, providing insights into the potential of soil microbes in the efficient management of agricultural P fertilization.


Subject(s)
Agriculture/methods , Phosphorus/analysis , Soil Microbiology , Fertilizers/analysis , Manure , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...