Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Digit Med ; 6(1): 60, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016152

ABSTRACT

Anticipation of clinical decompensation is essential for effective emergency and critical care. In this study, we develop a multimodal machine learning approach to predict the onset of new vital sign abnormalities (tachycardia, hypotension, hypoxia) in ED patients with normal initial vital signs. Our method combines standard triage data (vital signs, demographics, chief complaint) with features derived from a brief period of continuous physiologic monitoring, extracted via both conventional signal processing and transformer-based deep learning on ECG and PPG waveforms. We study 19,847 adult ED visits, divided into training (75%), validation (12.5%), and a chronologically sequential held-out test set (12.5%). The best-performing models use a combination of engineered and transformer-derived features, predicting in a 90-minute window new tachycardia with AUROC of 0.836 (95% CI, 0.800-0.870), new hypotension with AUROC 0.802 (95% CI, 0.747-0.856), and new hypoxia with AUROC 0.713 (95% CI, 0.680-0.745), in all cases significantly outperforming models using only standard triage data. Salient features include vital sign trends, PPG perfusion index, and ECG waveforms. This approach could improve the triage of apparently stable patients and be applied continuously for the prediction of near-term clinical deterioration.

2.
JAMA Netw Open ; 5(9): e2233712, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36169956

ABSTRACT

Importance: Accurate and timely documentation of vital signs affects all aspects of triage, diagnosis, and management. The adequacy of current patient monitoring practices and the potential to improve on them are poorly understood. Objective: To develop measures of fit between documented and actual patient vital signs throughout the visit, as determined from continuous physiologic monitoring, and to compare the performance of actual practice with alternative patient monitoring strategies. Design, Setting, and Participants: This cross-sectional study evaluated 25 751 adult visits to continuously monitored emergency department (ED) beds between August 1, 2020, and December 31, 2021. A series of monitoring strategies for the documentation of vital signs (heart rate [HR], respiratory rate [RR], oxygen saturation by pulse oximetry [Spo2], mean arterial pressure [MAP]) was developed and the strategies' ability to capture physiologic trends and vital sign abnormalities simulated. Strategies included equal spacing of charting events, charting at variable intervals depending on the last observed values, and discrete optimization of charting events. Main Outcomes and Measures: Coverage was defined as the proportion of monitor-derived vital sign measurements (at 1-minute resolution) that fall within the bounds of nursing-charted values over the course of an ED visit (HR ± 5 beats/min, RR ± 3 breaths/min, Spo2 ± 2%, and MAP ± 6 mm Hg). Capture was defined as the documentation of a vital sign abnormality detected by bedside monitor (tachycardia [HR >100 beats/min], bradycardia [HR <60 beats/min], hypotension [MAP <65 mm Hg], and hypoxia [Spo2 <95%]). Results: Median patient age was 60 years (IQR, 43-75 years), and 13 329 visits (51.8%) were by women. Monitored visits had a median of 4 (IQR, 2-5) vital sign charting events per visit. Compared with actual practice, a simple rule, which observes vital signs more frequently if the last observation fell outside the bounds of the previous values, and using the same number of observations as actual practice, produced relative coverage improvements of 31.5% (95% CI, 30.5%-32.5%) for HR, 31.0% (95% CI, 30.0%-32.0%) for MAP, 16.8% (95% CI, 16.0%-17.6%) for RR, and 7.8% (95% CI, 7.3%-8.3%) for Spo2. The same strategy improved capture of abnormalities by 38.9% (95% CI, 26.8%-52.2%) for tachycardia, 38.1% (95% CI, 29.0%-47.9%) for bradycardia, 39.0% (95% CI, 24.2%-55.7%) for hypotension, and 123.1% (95% CI, 110.7%-136.3%) for hypoxia. Analysis of optimal coverage suggested an additional scope for improvement through more sophisticated strategies. Conclusions and Relevance: In this cross-sectional study, actual documentation of ED vital signs was variable and incomplete, missing important trends and abnormalities. Alternative monitoring strategies may improve on current practice without increasing the overall frequency of patient monitoring.


Subject(s)
Bradycardia , Hypotension , Adult , Aged , Cross-Sectional Studies , Emergency Service, Hospital , Female , Humans , Hypoxia/diagnosis , Middle Aged , Monitoring, Physiologic
3.
J Am Med Inform Assoc ; 29(11): 1908-1918, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35994003

ABSTRACT

OBJECTIVE: Chest pain is common, and current risk-stratification methods, requiring 12-lead electrocardiograms (ECGs) and serial biomarker assays, are static and restricted to highly resourced settings. Our objective was to predict myocardial injury using continuous single-lead ECG waveforms similar to those obtained from wearable devices and to evaluate the potential of transfer learning from labeled 12-lead ECGs to improve these predictions. METHODS: We studied 10 874 Emergency Department (ED) patients who received continuous ECG monitoring and troponin testing from 2020 to 2021. We defined myocardial injury as newly elevated troponin in patients with chest pain or shortness of breath. We developed deep learning models of myocardial injury using continuous lead II ECG from bedside monitors as well as conventional 12-lead ECGs from triage. We pretrained single-lead models on a pre-existing corpus of labeled 12-lead ECGs. We compared model predictions to those of ED physicians. RESULTS: A transfer learning strategy, whereby models for continuous single-lead ECGs were first pretrained on 12-lead ECGs from a separate cohort, predicted myocardial injury as accurately as models using patients' own 12-lead ECGs: area under the receiver operating characteristic curve 0.760 (95% confidence interval [CI], 0.721-0.799) and area under the precision-recall curve 0.321 (95% CI, 0.251-0.397). Models demonstrated a high negative predictive value for myocardial injury among patients with chest pain or shortness of breath, exceeding the predictive performance of ED physicians, while attending to known stigmata of myocardial injury. CONCLUSIONS: Deep learning models pretrained on labeled 12-lead ECGs can predict myocardial injury from noisy, continuous monitor data early in a patient's presentation. The utility of continuous single-lead ECG in the risk stratification of chest pain has implications for wearable devices and preclinical settings, where external validation of the approach is needed.


Subject(s)
Chest Pain , Electrocardiography , Biomarkers , Chest Pain/diagnosis , Chest Pain/etiology , Dyspnea/diagnosis , Dyspnea/etiology , Electrocardiography/methods , Emergency Service, Hospital , Humans , Machine Learning , Troponin
4.
PLoS One ; 17(7): e0271487, 2022.
Article in English | MEDLINE | ID: mdl-35901027

ABSTRACT

Malnutrition is common, morbid, and often correctable, but subject to missed and delayed diagnosis. Better screening and prediction could improve clinical, functional, and economic outcomes. This study aimed to assess the predictability of malnutrition from longitudinal patient records, and the external generalizability of a predictive model. Predictive models were developed and validated on statewide emergency department (ED) and hospital admission databases for California, Florida and New York, including visits from October 1, 2015 to December 31, 2018. Visit features included patient demographics, diagnosis codes, and procedure categories. Models included long short-term memory (LSTM) recurrent neural networks trained on longitudinal trajectories, and gradient-boosted tree and logistic regression models trained on cross-sectional patient data. The dataset used for model training and internal validation (California and Florida) included 62,811 patient trajectories (266,951 visits). Test sets included 63,997 (California), 63,112 (Florida), and 62,472 (New York) trajectories, such that each cohort's composition was proportional to the prevalence of malnutrition in that state. Trajectories contained seven patient characteristics and up to 2,008 diagnosis categories. Area under the receiver-operating characteristic (AUROC) and precision-recall curves (AUPRC) were used to characterize prediction of first malnutrition diagnoses in the test sets. Data analysis was performed from September 2020 to May 2021. Between 4.0% (New York) and 6.2% (California) of patients received malnutrition diagnoses. The longitudinal LSTM model produced the most accurate predictions of malnutrition, with comparable predictive performance in California (AUROC 0.854, AUPRC 0.258), Florida (AUROC 0.869, AUPRC 0.234), and New York (AUROC 0.869, AUPRC 0.190). Deep learning models can reliably predict malnutrition from existing longitudinal patient records, with better predictive performance and lower data-collection requirements than existing instruments. This approach may facilitate early nutritional intervention via automated screening at the point of care.


Subject(s)
Deep Learning , Malnutrition , Cross-Sectional Studies , Emergency Service, Hospital , Humans , Logistic Models , Malnutrition/diagnosis , Malnutrition/epidemiology
5.
Bioinformatics ; 38(4): 1176-1178, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34788784

ABSTRACT

SUMMARY: Mian is a web application to interactively visualize, run statistical tools and train machine learning models on operational taxonomic unit (OTU) or amplicon sequence variant (ASV) datasets to identify key taxonomic groups, diversity trends or taxonomic composition shifts in the context of provided categorical or numerical sample metadata. Tools, including Fisher's exact test, Boruta feature selection, alpha and beta diversity, and random forest and deep neural network classifiers, facilitate open-ended data exploration and hypothesis generation on microbial datasets. AVAILABILITY: Mian is freely available at: miandata.org. Mian is an open-source platform licensed under the MIT license with source code available at github.com/tbj128/mian. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Microbiota , Software , Data Visualization , Machine Learning , Internet
6.
JMIR Rehabil Assist Technol ; 2(1): e3, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-28582240

ABSTRACT

BACKGROUND: Alternative and innovative strategies such as mHealth and eLearning are becoming a necessity for delivery of rehabilitation services. For example, older adults who require a wheelchair receive little, if any, training for proficiency with mobility skills. This substantive service gap is due in part to restricted availability of clinicians and challenges for consumers to attend appointments. A research team of occupational therapists and computer scientists engaged clinicians, consumers, and care providers using a participatory action design approach. A tablet-based application, Enhancing Participation In the Community by improving Wheelchair Skills (EPIC Wheels), was developed to enable in-chair home training, online expert trainer monitoring, and trainee-trainer communication via secure voice messaging. OBJECTIVE: Prior to undertaking a randomized controlled trial (RCT), a pilot study was conducted to determine the acceptability and feasibility of administering an mHealth wheelchair skills training program safely and effectively with two participants of different skill levels. The findings were used to determine whether further enhancements to the program were indicated. METHODS: The program included two in-person sessions with an expert trainer and four weeks of independent home training. The EPIC Wheels application included video instruction and demonstration, self-paced training activities, and interactive training games. Participants were provided with a 10-inch Android tablet, mounting apparatus, and mobile Wi-Fi device. Frequency and duration of tablet interactions were monitored and uploaded daily to an online trainer interface. Participants completed a structured evaluation survey and provided feedback post-study. The trainer provided feedback on the training protocol and trainer interface. RESULTS: Both participants perceived the program to be comprehensive, useful, and easily navigated. The trainer indicated usage data was comprehensive and informative for monitoring participant progress and adherence. The application performed equally well with multiple devices. Some initial issues with log-in requests were resolved via tablet-specific settings. Inconsistent Internet connectivity, resulting in delayed data upload and voice messaging, was specific to individual Wi-Fi devices and resolved by standardizing configuration. Based on the pilot results, the software was updated to make content download more robust. Additional features were also incorporated such as check marks for completed content, a more consumer-friendly aesthetic, and achievement awards. The trainer web interface was updated to improve usability and provides both a numerical and visual summary of participant data. CONCLUSIONS: The EPIC Wheels pilot study provided useful feedback on the feasibility of a tablet-based home program for wheelchair skills training among older adults, justifying advancement to evaluation in an RCT. The program may be expanded for use with other rehabilitation interventions and populations, particularly for those living in rural or remote locations. Future development will consider integration of built-in tablet sensors to provide performance feedback and enable interactive training activities. TRIAL REGISTRATION: ClinicalTrials.gov NCT01644292; https://clinicaltrials.gov/ct2/show/NCT01644292 (Archived by WebCite at http://www.webcitation.org/6XyvYyTUf).

SELECTION OF CITATIONS
SEARCH DETAIL
...