Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Quant Biol ; 9(2): 216-227, 2021 Jun.
Article in English | MEDLINE | ID: mdl-35414959

ABSTRACT

Background: Whole-exome sequencing (WES) studies have identified multiple genes enriched for de novo mutations (DNMs) in congenital heart disease (CHD) probands. However, risk gene identification based on DNMs alone remains statistically challenging due to heterogenous etiology of CHD and low mutation rate in each gene. Methods: In this manuscript, we introduce a hierarchical Bayesian framework for gene-level association test which jointly analyzes de novo and rare transmitted variants. Through integrative modeling of multiple types of genetic variants, gene-level annotations, and reference data from large population cohorts, our method accurately characterizes the expected frequencies of both de novo and transmitted variants and shows improved statistical power compared to analyses based on DNMs only. Results: Applied to WES data of 2,645 CHD proband-parent trios, our method identified 15 significant genes, half of which are novel, leading to new insights into the genetic bases of CHD. Conclusion: These results showcase the power of integrative analysis of transmitted and de novo variants for disease gene discovery.

2.
J Med Chem ; 62(7): 3381-3394, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30875465

ABSTRACT

A "fragment hit", a molecule of low molecular weight that has been validated to bind to a target protein, can be an effective chemical starting point for a drug discovery project. Our ability to find and progress fragment hits could potentially be improved by enhancing our understanding of their binding properties, which to date has largely been based on tacit knowledge and reports from individual projects. In the work reported here, we systematically analyzed the molecular and binding properties of fragment hits using 489 published protein-fragment complexes. We identified a number of notable features that these hits tend to have in common, including preferences in buried surface area upon binding, hydrogen bonding and other directional interactions with the protein targets, structural topology, functional-group occurrence, and degree of carbon saturation. In the future, taking account of these preferences in designing and selecting fragments to screen against protein targets may increase the chances of success in fragment screening campaigns.


Subject(s)
Drug Discovery/methods , Small Molecule Libraries/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Ligands , Protein Binding
3.
Am J Hum Genet ; 101(6): 939-964, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29220677

ABSTRACT

Despite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic architecture is far from complete. Jointly modeling multiple traits' genetic profiles has provided insights into the shared genetic basis of many complex traits. However, large-scale inference sets a high bar for both statistical power and biological interpretability. Here we introduce a principled framework to estimate annotation-stratified genetic covariance between traits using GWAS summary statistics. Through theoretical and numerical analyses, we demonstrate that our method provides accurate covariance estimates, thereby enabling researchers to dissect both the shared and distinct genetic architecture across traits to better understand their etiologies. Among 50 complex traits with publicly accessible GWAS summary statistics (Ntotal≈ 4.5 million), we identified more than 170 pairs with statistically significant genetic covariance. In particular, we found strong genetic covariance between late-onset Alzheimer disease (LOAD) and amyotrophic lateral sclerosis (ALS), two major neurodegenerative diseases, in single-nucleotide polymorphisms (SNPs) with high minor allele frequencies and in SNPs located in the predicted functional genome. Joint analysis of LOAD, ALS, and other traits highlights LOAD's correlation with cognitive traits and hints at an autoimmune component for ALS.


Subject(s)
Alzheimer Disease/genetics , Amyotrophic Lateral Sclerosis/genetics , Analysis of Variance , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Linkage Disequilibrium/genetics , Molecular Sequence Annotation , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
4.
Stat Biosci ; 2016: 1-17, 2016.
Article in English | MEDLINE | ID: mdl-27812370

ABSTRACT

Rich collections of genomic and epigenomic annotations, availabilities of large population cohorts for genome-wide association studies (GWAS), and advancements in data integration techniques provide the unprecedented opportunity to accelerate discoveries in complex disease studies through integrative analyses. In this paper, we apply a variety of approaches to integrate GWAS summary statistics of chronic obstructive pulmonary disease (COPD) with functional annotations to illustrate how data integration could help researchers understand complex human diseases. We show that incorporating functional annotations can better prioritize GWAS signals at both the global and the local levels. Signal prioritization on severe COPD GWAS reveals multiple potential risk loci that are linked with pulmonary functions. Enrichment analysis provides novel insights on the pathogenesis of COPD and hints the existence of genetic contributions to muscle dysfuncion and chronic lung inflammation, two symptoms that are often co-morbid with COPD. Our results suggest that rich signals for COPD genetics are still buried under the Bonferroni-corrected genome-wide significance threshold. Many more biological findings are expected to emerge as more samples are recruited for COPD studies.

SELECTION OF CITATIONS
SEARCH DETAIL