Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625031

ABSTRACT

BACKGROUND: To discover novel fungicide candidates, five series of novel norbornene hydrazide, bishydrazide, oxadiazole, carboxamide and acylthiourea derivatives (2a-2t, 3a-3f, 4a-4f, 5a-5f and 7a-7f) were designed, synthesized and assayed for their antifungal activity toward seven representative plant fungal pathogens. RESULTS: In the in vitro antifungal assay, some title norbornene derivatives presented good antifungal activity against Botryosphaeria dothidea, Sclerotinia sclerotiorum and Fusarium graminearum. Especially, compound 2b exhibited the best inhibitory activity toward B. dothidea with the median effective concentration (EC50) of 0.17 mg L-1, substantially stronger than those of the reference fungicides boscalid and carbendazim. The in vivo antifungal assay on apples revealed that 2b had significant curative and protective effects, both of which were superior to boscalid. In the preliminary antifungal mechanism study, 2b was able to injure the surface morphology of hyphae, destroy the cell membrane integrity and increase the intracellular reactive oxygen species (ROS) level of B. dothidea. In addition, 2b could considerably inhibit the laccase activity with the median inhibitory concentration (IC50) of 1.02 µM, much stronger than that of positive control cysteine (IC50 = 35.50 µM). The binding affinity and interaction mode of 2b with laccase were also confirmed by molecular docking. CONCLUSION: This study presented a promising lead compound for the study of novel laccase inhibitors as fungicidal agrochemicals, which demonstrate significant anti-B. dothidea activity and laccase inhibitory activity. © 2024 Society of Chemical Industry.

2.
Chem Biodivers ; : e202302033, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616167

ABSTRACT

To explore more potential fungicides with new scaffolds, thirty-seven norbornene carboxamide/sulfonamide derivatives were designed, synthesized, and assayed for inhibitory activity against six plant pathogenic fungi and oomycetes. The preliminary antifungal assay suggested that the title derivatives showed moderate to good antifungal activity against six plant pathogens. Especially, compound 6 e presented excellent in vitro antifungal activity against Sclerotinia sclerotiorum (EC50=0.71 mg/L), which was substantially stronger than pydiflumetofen. In vivo antifungal assay indicated 6 e displayed prominent protective and curative effects on rape leaves infected by S. sclerotiorum. The preliminary mechanism research displayed that 6 e could damage the surface morphology and inhibit the sclerotia formation of S. sclerotiorum. In addition, the in vitro enzyme inhibition bioassay indicated that 6 e displayed pronounced laccase inhibition activity (IC50=0.63 µM), much stronger than positive control cysteine. Molecular docking elucidated the binding modes between 6 e and laccase. The bioassay results and mechanism investigation demonstrated that this class of norbornene carboxamide/sulfonamide derivatives could be promising laccase inhibitors for novel fungicide development.

3.
Chem Biodivers ; 20(7): e202300539, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37317940

ABSTRACT

To discover novel laccase inhibitors as potential fungicides, twenty-six novel L-menthol hydrazide derivatives were designed and synthesized. In the in vitro antifungal assay, most of the target compounds displayed pronounced antifungal activity against Sclerotinia sclerotiorum, Fusarium graminearum, and Botryosphaeria dothidea. Especially, the EC50 of compounds 3 b and 3 q against B. dothidea was 0.465 and 0.622 mg/L, which was close to the positive compound fluxapyroxad (EC50 =0.322 mg/L). Scanning electron microscopy (SEM) analysis showed that compound 3 b could significantly damage the mycelial morphology of B. dothidea. In vivo antifungal experiments on apple fruits showed that 3 b exhibited excellent protective and curative effects. Furthermore, in the in vitro laccase inhibition assay, 3 b showed outstanding inhibitory activity with the IC50 value of 2.08 µM, which is much stronger than positive control cysteine and PMDD-5Y. These results indicated that this class of L-menthol derivatives could be promising leads for the discovery of laccase-targeting fungicides.


Subject(s)
Antifungal Agents , Fungicides, Industrial , Antifungal Agents/pharmacology , Menthol , Laccase , Structure-Activity Relationship , Hydrazines
4.
Pest Manag Sci ; 79(7): 2469-2481, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36827223

ABSTRACT

BACKGROUND: To explore further potential natural product-based antifungal agents, a series of novel nopol-based carboxamide and hydrazide derivatives containing a natural pinene structure were designed, synthesized, and evaluated for their inhibitory activities against seven phytopathogenic fungi and oomycetes. RESULTS: The bioassay results indicated that some compounds exhibited good inhibitory activities against Gibberella zeae, Sclerotinia sclerotiorum, and Phytophthora capsici. Among them, compound 3h displayed excellent in vitro activities against G. zeae, with EC50 values of 1.09 mg L-1 , which was comparable with the commercial fungicides bixafen and carbendazim (median effective concentration [EC50 ] = 1.21 and 0.89 mg L-1 , respectively). Notably, in vivo bioassay results suggested that compound 3h also showed prominent protective and curative effects (95.6% and 94.2%) at 200 mg L-1 against G. zeae. The scanning electron microscopy study indicated that compound 3h could destroy the morphological integrity of G. zeae hyphae. The in vitro enzyme inhibitory bioassay revealed that compound 3h exhibited potent inhibitory activity against laccase with median inhibitory concentration (IC50 ) values of 4.93 µm, superior to positive control cysteine (IC50  = 35.50 µm), and its binding modes with laccase were elucidated by molecular docking study. In addition, the fluorescent imaging of the dansylamide-labeled derivatives 8 on wheat leaf epidermal cells and the hyphae of G. zeae revealed that this class of hydrazide derivatives could readily permeate into wheat leaves and reached the laccase target in fungal cells. CONCLUSION: Some nopol-based hydrazide derivatives exhibited excellent anti-G. zeae activity and laccase inhibitory activity, which merits further development as a new fungicide candidate for controlling Fusarium head blight. © 2023 Society of Chemical Industry.


Subject(s)
Antifungal Agents , Fungicides, Industrial , Antifungal Agents/chemistry , Laccase , Molecular Docking Simulation , Fungicides, Industrial/chemistry , Hydrazines , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...