Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 798, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025916

ABSTRACT

The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a notorious pest in agriculture that has developed resistance to almost all chemical types used for its control. Here, we assembled a chromosome-level genome for the TSSM using Illumina, Nanopore, and Hi-C sequencing technologies. The assembled contigs had a total length of 103.94 Mb with an N50 of 3.46 Mb, with 87.7 Mb of 34 contigs anchored to three chromosomes. The chromosome-level genome assembly had a BUSCO completeness of 94.8%. We identified 15,604 protein-coding genes, with 11,435 genes that could be functionally annotated. The high-quality genome provides invaluable resources for the genetic and evolutionary study of TSSM.


Subject(s)
Tetranychidae , Animals , Tetranychidae/genetics , Chromosomes , Genome
2.
J Fungi (Basel) ; 10(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39057354

ABSTRACT

Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) is a highly dispersive, polyphagous insect pest that severely defoliates crops. Excessive reliance on synthetic insecticides leads to ecological pollution and resistance development, urging scientists to probe eco-friendly biopesticides. Here, we explore the virulence of an entomopathogenic fungus, Beauveria bassiana, against S. exigua, resulting in 88% larval mortality. Using an age-stage, two-sex life table, we evaluated the lethal and sublethal effects of B. bassiana on the demographic parameters of S. exigua, including survival, development, and reproduction. Sublethal (LC20) and lethal concentrations (LC50) of B. bassiana impacted the parental generation (F0), with these effects further influencing the demographic parameters of the first filial generation (F1). The infected F1 offsprings showed a reduced intrinsic rate of increase (r), mean generation time (T), and net reproduction rate (R0). Larval developmental duration varied significantly between the control (10.98 d) and treated groups (LC20: 10.42; LC50: 9.37 d). Adults in the treated groups had significantly reduced lifespans (M: 8.22; F: 7.32 d) than the control (M: 10.00; F: 8.22 d). Reduced fecundity was observed in the B. bassiana-infected groups (LC20: 313.45; LC50: 223.92 eggs/female) compared to the control (359.55 eggs/female). A biochemical assay revealed elevated levels of detoxification enzymes (esterases, glutathione S-transferases, and acetylcholinesterase) in the F0 generation after B. bassiana infection. However, the enzymatic activity remained non-significant in the F1 generation likely due to the lack of direct fungal exposure. Our findings highlight the enduring effects of B. bassiana on the biological parameters and population dynamics of S. exigua, stressing its use in eco-friendly management programs.

3.
Ecotoxicol Environ Saf ; 277: 116371, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663196

ABSTRACT

Nicotine, a naturally occurring alkaloid found in tobacco, is a potent neurotoxin extensively used to control Nilaparvata lugens (Stål), a destructive insect pest of rice crops. The insect gut harbors a wide array of resident microorganisms that profoundly influence several biological processes, including host immunity. Maintaining an optimal gut microbiota and immune homeostasis requires a complex network of reciprocal regulatory interactions. However, the underlying molecular mechanisms driving these symbiotic exchanges, particularly between specific gut microbe and immunity, remain largely unknown in insects. Our previous investigations identified and isolated a nicotine-degrading Burkholderia cepacia strain (BsNLG8) with antifungal properties. Building on those findings, we found that nicotine intake significantly increased the abundance of a symbiotic bacteria BsNLG8, induced a stronger bacteriostatic effect in hemolymph, and enhanced the nicotine tolerance of N. lugens. Additionally, nicotine-induced antimicrobial peptides (AMPs) exhibited significant antibacterial effects against Staphylococcus aureus. We adopted RNA-seq to explore the underlying immunological mechanisms in nicotine-stressed N. lugens. Bioinformatic analyses identified numerous differentially expressed immune genes, including recognition/immune activation (GRPs and Toll) and AMPs (i.e., Defensin, Lugensin, lysozyme). Temporal expression profiling (12, 24, and 48 hours) of immune genes revealed pattern recognition proteins and immune effectors as primary responders to nicotine-induced stress. Defensin A, a broad-spectrum immunomodulatory cationic peptide, exhibited significantly high expression. RNA interference-mediated silencing of Defensin A reduced the survival, enhanced nicotine sensitivity of N. lugens to nicotine, and decreased the abundance of BsNLG8. The reintroduction of BsNLG8 improved the expression of immune genes, aiding nicotine resistance of N. lugens. Our findings indicate a potential reciprocal immunomodulatory interaction between Defensin A and BsNLG8 under nicotine stress. Moreover, this study offers novel and valuable insights for future research into enhancing nicotine-based pest management programs and developing alternative biocontrol methods involving the implication of insect symbionts.


Subject(s)
Burkholderia cepacia , Gastrointestinal Microbiome , Hemiptera , Nicotine , Animals , Nicotine/toxicity , Nicotine/pharmacology , Hemiptera/drug effects , Gastrointestinal Microbiome/drug effects , Burkholderia cepacia/drug effects , Defensins/genetics , Stress, Physiological/drug effects , Symbiosis
4.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256210

ABSTRACT

MicroRNAs (miRNAs) play a pivotal role in important biological processes by regulating post-transcriptional gene expression and exhibit differential expression patterns during development, immune responses, and stress challenges. The diamondback moth causes significant economic damage to crops worldwide. Despite substantial advancements in understanding the molecular biology of this pest, our knowledge regarding the role of miRNAs in regulating key immunity-related genes remains limited. In this study, we leveraged whole transcriptome resequencing data from Plutella xylostella infected with Metarhizium anisopliae to identify specific miRNAs targeting the prophenoloxidase-activating protease1 (PAP1) gene and regulate phenoloxidase (PO) cascade during melanization. Seven miRNAs (pxy-miR-375-5p, pxy-miR-4448-3p, pxy-miR-279a-3p, pxy-miR-3286-3p, pxy-miR-965-5p, pxy-miR-8799-3p, and pxy-miR-14b-5p) were screened. Luciferase reporter assays confirmed that pxy-miR-279a-3p binds to the open reading frame (ORF) and pxy-miR-965-5p to the 3' untranslated region (3' UTR) of PAP1. Our experiments demonstrated that a pxy-miR-965-5p mimic significantly reduced PAP1 expression in P. xylostella larvae, suppressed PO activity, and increased larval mortality rate. Conversely, the injection of pxy-miR-965-5p inhibitor could increase PAP1 expression and PO activity while decreasing larval mortality rate. Furthermore, we identified four LncRNAs (MSTRG.32910.1, MSTRG.7100.1, MSTRG.6802.1, and MSTRG.22113.1) that potentially interact with pxy-miR-965-5p. Interference assays using antisense oligonucleotides (ASOs) revealed that silencing MSTRG.7100.1 and MSTRG.22113.1 increased the expression of pxy-miR-965-5p. These findings shed light on the potential role of pxy-miR-965-5p in the immune response of P. xylostella to M. anisopliae infection and provide a theoretical basis for biological control strategies targeting the immune system of this pest.


Subject(s)
Lepidoptera , Metarhizium , MicroRNAs , Animals , Metarhizium/genetics , Lepidoptera/genetics , 3' Untranslated Regions , Biological Assay , Larva/genetics , MicroRNAs/genetics
5.
J Agric Food Chem ; 72(4): 2263-2276, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38235648

ABSTRACT

Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.


Subject(s)
Bacillus thuringiensis , Insecticides , MicroRNAs , Moths , Animals , Moths/genetics , Moths/metabolism , Larva/genetics , Larva/metabolism , Trypsin/genetics , Trypsin/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Bacillus thuringiensis/chemistry , Endotoxins/genetics , Endotoxins/pharmacology , Endotoxins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Insecticide Resistance/genetics
6.
iScience ; 27(2): 108795, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38292423

ABSTRACT

Macroautophagy/autophagy is a conserved process in eukaryotic cells to degrade and recycle damaged intracellular components. Higher level of autophagy in the brain has been observed, and autophagy dysfunction has an impact on neuronal health, but the molecular mechanism is unclear. In this study, we showed that overexpression of Toll-1 and Toll-7 receptors, as well as active Spätzle proteins in Drosophila S2 cells enhanced autophagy, and Toll-1/Toll-7 activated autophagy was dependent on Tube-Pelle-PP2A. Interestingly, Toll-1 but not Toll-7 mediated autophagy was dMyd88 dependent. Importantly, we observed that loss of functions in Toll-1 and Toll-7 receptors and PP2A activity in flies decreased autophagy level, resulting in the loss of dopamine (DA) neurons and reduced fly motion. Our results indicated that proper activation of Toll-1 and Toll-7 pathways and PP2A activity in the brain are necessary to sustain autophagy level for DA neuron survival.

SELECTION OF CITATIONS
SEARCH DETAIL