Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(13): e2208965, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36745845

ABSTRACT

The increasing resistance of copper (Cu) interconnects for decreasing dimensions is a major challenge in continued downscaling of integrated circuits beyond the 7 nm technology node as it leads to unacceptable signal delays and power consumption in computing. The resistivity of Cu increases due to electron scattering at surfaces and grain boundaries at the nanoscale. Topological semimetals, owing to their topologically protected surface states and suppressed electron backscattering, are promising candidates to potentially replace current Cu interconnects. Here, we report the unprecedented resistivity scaling of topological metal molybdenum phosphide (MoP) nanowires, and it is shown that the resistivity values are superior to those of nanoscale Cu interconnects <500 nm2 cross-section areas. The cohesive energy of MoP suggests better stability against electromigration, enabling a barrier-free design . MoP nanowires are more resistant to surface oxidation than the 20 nm thick Cu. The thermal conductivity of MoP is comparable to those of Ru and Co. Most importantly, it is demonstrated that the dimensional scaling of MoP, in terms of line resistance versus total cross-sectional area, is competitive to those of effective Cu with barrier/liner and barrier-less Ru, suggesting MoP is an attractive alternative for the scaling challenge of Cu interconnects.

2.
Int J Mol Sci ; 25(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38203574

ABSTRACT

Over the last ten years, the discovery of topological materials has opened up new areas in condensed matter physics. These materials are noted for their distinctive electronic properties, unlike conventional insulators and metals. This discovery has not only spurred new research areas but also offered innovative approaches to electronic device design. A key aspect of these materials is now that transforming them into nanostructures enhances the presence of surface or edge states, which are the key components for their unique electronic properties. In this review, we focus on recent synthesis methods, including vapor-liquid-solid (VLS) growth, chemical vapor deposition (CVD), and chemical conversion techniques. Moreover, the scaling down of topological nanomaterials has revealed new electronic and magnetic properties due to quantum confinement. This review covers their synthesis methods and the outcomes of topological nanomaterials and applications, including quantum computing, spintronics, and interconnects. Finally, we address the materials and synthesis challenges that need to be resolved prior to the practical application of topological nanomaterials in advanced electronic devices.


Subject(s)
Computing Methodologies , Nanostructures , Quantum Theory , Electronics , Gases
3.
ACS Nano ; 16(10): 16385-16393, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36129115

ABSTRACT

Ultrathin layered crystals of coordinated chromium(III) are promising not only as two-dimensional (2D) magnets but also as 2D near-infrared (NIR) emitters due to long-range spin correlation and efficient transition between high- and low-spin excited states of Cr3+ ions. In this study, we report on the dual-band NIR photoluminescence (PL) of CrPS4 and show that its excitonic emission bifurcates into fluorescence and phosphorescence depending on thickness, temperature, and defect density. In addition to the spectral branching, the biexponential decay of PL transients, also affected by the three factors, could be well described within a three-level kinetic model for Cr(III). In essence, the PL bifurcations are governed by activated reverse intersystem crossing from the low- to high-spin states, and the transition barrier becomes lower for thinner 2D samples because of surface-localized defects. Our findings can be generalized to 2D solids of coordinated metals and will be valuable in realizing groundbreaking magneto-optic functions and devices.

4.
Nat Nanotechnol ; 16(10): 1092-1098, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34267369

ABSTRACT

A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS2, WS2 and WSe2. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal-organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations-one of the most distinctive electronic features in vdW ML semiconductors-which scale with the stack numbers n in our (MoS2/WS2)n SLs on optical excitations.

5.
Sci Adv ; 5(7): eaaw3180, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31360767

ABSTRACT

We report wafer-scale growth of atomically thin, three-dimensional (3D) van der Waals (vdW) semiconductor membranes. By controlling the growth kinetics in the near-equilibrium limit during metal-organic chemical vapor depositions of MoS2 and WS2 monolayer (ML) crystals, we have achieved conformal ML coverage on diverse 3D texture substrates, such as periodic arrays of nanoscale needles and trenches on quartz and SiO2/Si substrates. The ML semiconductor properties, such as channel resistivity and photoluminescence, are verified to be seamlessly uniform over the 3D textures and are scalable to wafer scale. In addition, we demonstrated that these 3D films can be easily delaminated from the growth substrates to form suspended 3D semiconductor membranes. Our work suggests that vdW ML semiconductor films can be useful platforms for patchable membrane electronics with atomic precision, yet large areas, on arbitrary substrates.

6.
Nano Lett ; 19(6): 4043-4051, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31074998

ABSTRACT

Many two-dimensional (2D) semiconductors represented by transition metal dichalcogenides have tunable optical bandgaps in the visible or near IR-range standing as a promising candidate for optoelectronic devices. Despite this potential, however, their photoreactions are not well understood or controversial in the mechanistic details. In this work, we report a unique thickness-dependent photoreaction sensitivity and a switchover between two competing reaction mechanisms in atomically thin chromium thiophosphate (CrPS4), a two-dimensional antiferromagnetic semiconductor. CrPS4 showed a threshold power density 2 orders of magnitude smaller than that for MoS2 obeying a photothermal reaction route. In addition, reaction cross section quantified with Raman spectroscopy revealed distinctive power dependences in the low and high power regimes. On the basis of optical in situ thermometric measurements and control experiments against O2, water, and photon energy, we proposed a photochemical oxidation mechanism involving singlet O2 in the low power regime with a photothermal route for the other. We also demonstrated a highly effective encapsulation with Al2O3 as a protection against the destructive photoinduced and ambient oxidations.

7.
Nat Commun ; 6: 7372, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26099952

ABSTRACT

Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system.

8.
Adv Mater ; 27(25): 3803-10, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26011695

ABSTRACT

2D vertical stacking and lateral stitching growth of monolayer (ML) hexagonal transition-metal dichalcogenides are reported. The 2D heteroepitaxial manipulation of MoS2 and WS2 MLs is achieved by control of the 2D nucleation kinetics during the sequential vapor-phase growth. It enables the creation of hexagon-on-hexagon unit-cell stacking and hexagon-by-hexagon stitching without interlayer rotation misfits.

SELECTION OF CITATIONS
SEARCH DETAIL
...