Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 336
Filter
1.
Environ Sci Technol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019030

ABSTRACT

While maternal exposure to high metal levels during pregnancy is an established risk factor for birth defects, the role of paternal exposure remains largely unknown. We aimed to assess the associations of prenatal paternal and maternal metal exposure and parental coexposure with birth defects in singletons. This study conducted within the Jiangsu Birth Cohort recruited couples in early pregnancy. We measured their urinary concentrations for 25 metals. A total of 1675 parent-offspring trios were included. The prevalence of any birth defects among infants by one year of age was 7.82%. Paternal-specific gravity-corrected urinary concentrations of titanium, vanadium, chromium, manganese, cobalt, nickel, copper, and selenium and maternal vanadium, chromium, nickel, copper, selenium, and antimony were associated with a 21-91% increased risk of birth defects after adjusting for covariates. These effects persisted after mutual adjustment for the spouse's exposure. Notably, when assessing the parental mixture effect by Bayesian kernel machine regression, paternal and maternal chromium exposure ranked the highest in relative importance. Parental coexposure to metal mixture showed a pronounced joint effect on the risk of overall birth defects, as well as for some specific subtypes. Our findings suggested a couple-based prevention strategy for metal exposure to reduce birth defects in offspring.

2.
JAMA Netw Open ; 7(7): e2423946, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39037813

ABSTRACT

Importance: Maternal hypertensive disorder in pregnancy (HDP) might affect ocular health in offspring; however, its association with strabismus remains unclear. Objective: To examine the association of maternal HDP with overall and type-specific strabismus in offspring. Design, Setting, and Participants: In the Jiangsu Birth Cohort study, a population-based study in China, pregnant women were recruited from April 24, 2014, to November 30, 2018. A total of 6195 offspring had maternal HDP diagnosis information, of whom 3078 were excluded due to having no information on ocular alignment or due to having ocular diseases other than strabismus or refractive error. Offspring underwent ocular examinations at 3 years of age, completed May 21, 2022. Data were analyzed from May 28, 2022, through December 15, 2023. Exposure: Maternal HDP, categorized into hypertension and preeclampsia or with blood pressure (BP) well controlled (systolic BP, <130; diastolic BP, <80 mm Hg) and poorly controlled (systolic BP, ≥130; diastolic BP, ≥80 mm Hg). Main Outcomes and Measures: The primary outcome was the incidence of strabismus in offspring. Poisson generalized linear mixed models were used to estimate the association between maternal HDP and strabismus. Results: Among the included 3117 children (mean [SD] age, 36.30 [0.74] months; 1629 boys [52.3%]), 143 (4.6%) were exposed to maternal HDP and 368 (11.8%) had strabismus. Offspring exposed to maternal HDP had an 82% increased risk of overall strabismus (relative risk [RR], 1.82 [95% CI, 1.21-2.74]), an 82% increased risk of exophoria (RR, 1.82 [95% CI, 1.11-3.00]), and a 136% increased risk of intermittent exotropia (RR, 2.36 [95% CI, 1.13-4.93]) compared with unexposed offspring. When considering the type of maternal HDP, the risk for all strabismus was high for offspring exposed to preeclampsia (RR, 2.38 [95% CI, 1.39-4.09]) compared with unexposed offspring. When considering the BP control level of maternal HDP, the risk for all strabismus was high for offspring born to mothers with HDP and poorly controlled BP (RR, 2.07 [95% CI, 1.32-3.24]) compared with unexposed offspring. Conclusions and Relevance: These findings suggest that maternal HDP is associated with an increased risk of offspring strabismus. Early screening of strabismus might be recommended for offspring with maternal HDP. Further exploration of the underlying mechanism of the association between HDP and strabismus is warranted.


Subject(s)
Hypertension, Pregnancy-Induced , Prenatal Exposure Delayed Effects , Strabismus , Humans , Pregnancy , Female , Strabismus/epidemiology , Strabismus/etiology , China/epidemiology , Adult , Child, Preschool , Male , Prenatal Exposure Delayed Effects/epidemiology , Hypertension, Pregnancy-Induced/epidemiology , Incidence , Birth Cohort , Cohort Studies , Risk Factors , Pre-Eclampsia/epidemiology
3.
Cancer Lett ; 597: 217057, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876387

ABSTRACT

Risk prediction tools for colorectal cancer (CRC) have potential to improve the efficiency of population-based screening by facilitating risk-adapted strategies. However, such an applicable tool has yet to be established in the Chinese population. In this study, a risk score was created using data from the China Kadoorie Biobank (CKB), a nationwide cohort study of 409,854 eligible participants. Diagnostic performance of the risk score was evaluated in an independent CRC screening programme, which included 91,575 participants who accepted colonoscopy at designed hospitals in Zhejiang Province, China. Over a median follow-up of 11.1 years, 3136 CRC cases were documented in the CKB. A risk score was created based on nine questionnaire-derived variables, showing moderate discrimination for 10-year CRC risk (C-statistic = 0.68, 95 % CI: 0.67-0.69). In the CRC screening programme, the detection rates of CRC were 0.25 %, 0.82 %, and 1.93 % in low-risk (score <6), intermediate-risk (score: 6-19), and high-risk (score >19) groups, respectively. The newly developed score exhibited a C-statistic of 0.65 (95 % CI: 0.63-0.66), surpassing the widely adopted tools such as the Asia-Pacific Colorectal Screening (APCS), modified APCS, and Korean Colorectal Screening scores (all C-statistics = 0.60). In conclusion, we developed a novel risk prediction tool that is useful to identify individuals at high risk of CRC. A user-friendly online calculator was also constructed to encourage broader adoption of the tool.

4.
Sci Total Environ ; 942: 173812, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38857795

ABSTRACT

Prenatal exposures to toxic metals and trace elements have been linked to childhood neurodevelopment. However, existing evidence remains inconclusive, and further research is needed to investigate the mixture effects of multiple metal exposures on childhood neurodevelopment. We aimed to examine the associations between prenatal exposure to specific metals and metal mixtures and neurodevelopment in children. In this prospective cohort study, we used the multivariable linear regressions and the robust modified Poisson regressions to explore the associations of prenatal exposure to 25 specific metals with neurodevelopment among children at 3 years of age in 854 mother-child pairs from the Jiangsu Birth Cohort (JBC) Study. The Bayesian kernel machine regression (BKMR) was employed to assess the joint effects of multiple metals on neurodevelopment. Prenatal manganese (Mn) exposure was negatively associated with the risk of non-optimal cognition development of children, while vanadium (V), copper (Cu), zinc (Zn), antimony (Sb), cerium (Ce) and uranium (U) exposures were positively associated with the risk of non-optimal gross motor development. BKMR identified an interaction effect between Sb and Ce on non-optimal gross motor development. Additionally, an element risk score (ERS), representing the mixture effect of multiple metal exposures including V, Cu, Zn, Sb, Ce and U was constructed based on weights from a Poisson regression model. Children with ERS in the highest tertile had higher probability of non-optimal gross motor development (RR = 2.37, 95 % CI: 1.15, 4.86) versus those at the lowest tertile. Notably, Sb [conditional-posterior inclusion probabilities (cPIP) = 0.511] and U (cPIP = 0.386) mainly contributed to the increased risk of non-optimal gross motor development. The findings highlight the importance of paying attention to the joint effects of multiple metals on children's neurodevelopment. The ERS score may serve as an indicator of comprehensive metal exposure risk for children's neurodevelopment.


Subject(s)
Child Development , Maternal Exposure , Metals , Prenatal Exposure Delayed Effects , Humans , Female , Prenatal Exposure Delayed Effects/chemically induced , Pregnancy , Child, Preschool , Prospective Studies , Child Development/drug effects , Metals/toxicity , Male , Maternal Exposure/statistics & numerical data , Maternal Exposure/adverse effects , Environmental Pollutants/toxicity , Birth Cohort , China/epidemiology
5.
Ecotoxicol Environ Saf ; 279: 116470, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772147

ABSTRACT

Several studies have suggested an association between exposure to various metals and the onset of type 2 diabetes (T2D). However, the results vary across different studies. We aimed to investigate the associations between serum metal concentrations and the risk of developing T2D among 8734 participants using a prospective cohort study design. We utilized inductively coupled plasmamass spectrometry (ICP-MS) to assess the serum concentrations of 27 metals. Cox regression was applied to calculate the hazard ratios (HRs) for the associations between serum metal concentrations on the risk of developing T2D. Additionally, 196 incident T2D cases and 208 healthy control participants were randomly selected for serum metabolite measurement using an untargeted metabolomics approach to evaluate the mediating role of serum metabolite in the relationship between serum metal concentrations and the risk of developing T2D with a nested casecontrol study design. In the cohort study, after Bonferroni correction, the serum concentrations of zinc (Zn), mercury (Hg), and thallium (Tl) were positively associated with the risk of developing T2D, whereas the serum concentrations of manganese (Mn), molybdenum (Mo), barium (Ba), lutetium (Lu), and lead (Pb) were negatively associated with the risk of developing T2D. After adding these eight metals, the predictive ability increased significantly compared with that of the traditional clinical model (AUC: 0.791 vs. 0.772, P=8.85×10-5). In the nested casecontrol study, a machine learning analysis revealed that the serum concentrations of 14 out of 1579 detected metabolites were associated with the risk of developing T2D. According to generalized linear regression models, 7 of these metabolites were significantly associated with the serum concentrations of the identified metals. The mediation analysis showed that two metabolites (2-methyl-1,2-dihydrophthalazin-1-one and mestranol) mediated 46.81% and 58.70%, respectively, of the association between the serum Pb concentration and the risk of developing T2D. Our study suggested that serum Mn, Zn, Mo, Ba, Lu, Hg, Tl, and Pb were associated with T2D risk. Two metabolites mediated the associations between the serum Pb concentration and the risk of developing T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Metals , Humans , Diabetes Mellitus, Type 2/blood , Prospective Studies , Male , Female , Middle Aged , China , Metals/blood , Adult , Aged , Environmental Pollutants/blood , Cohort Studies , Metabolomics , Case-Control Studies , Thallium/blood , Environmental Exposure/statistics & numerical data , East Asian People
6.
Elife ; 132024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687190

ABSTRACT

Background: Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer. Methods: Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs). Results: Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18-1.27) in men, and 1.26 (1.22-1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10-2.51) for men and 1.94 (1.78-2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = -1.01 in men, p<0.001; Beta = -0.98 in women, p<0.001). Conclusions: Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle. Funding: This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).


Age is a major risk factor for cancer. Other factors, such as lifestyle or environmental exposures, may increase or mitigate cancer risks. Biological age, which considers accelerated aging processes, may, however, better predict cancer risk than chronological age. Some scientists propose using biological aging measures as an alternative for assessing cancer and other age-related disease risks, as these markers may provide a more accurate assessment of the various factors contributing to cancer risk. PhenoAge, a measure of biological aging processes in the body, could provide an alternative way to assessing aging-related cancer risks. This tool utilizes an individual's chronological age and nine biomarkers of aging processes. It has the potential to identify individuals whose aging process is accelerated compared to their peers, potentially indicating an increased cancer risk. This information may empower them to make lifestyle changes that could significantly reduce their risk. To assess the suitability of PhenoAge, Bian, Ma et al. used nine clinical chemistry biomarkers and chronological age to calculate PhenoAge in 374,463 participants from the UK Biobank. Their findings revealed that people with older PhenoAges ­ regardless of their genetic risk profiles ­ have an increased risk of cancer. Individuals with higher PhenoAge scores, indicating accelerated biological aging, had a roughly 25 percent higher risk of developing cancer. Individuals with both a high genetic risk and higher PhenoAge score had roughly double the risk of cancer. People with lower PhenoAges were more likely to have healthier lifestyles. These results suggest that adopting healthier lifestyles may slow the aging process and reduce cancer risk. While the analyses conducted by Bian, Ma et al. provide promising insights, they also underscore the need for further research. PhenoAge may offer a way to assess biological aging and identify individuals at higher risk of cancer. Those with higher PhenoAge scores may benefit from earlier cancer screening, and adopting a healthier lifestyle could potentially slow down the aging process and reduce their cancer risk. However, more studies in more diverse cohorts of people are needed to confirm that PhenoAge is a reliable marker for cancer risk and to test interventions to slow aging and reduce cancer risks in individuals with accelerated aging.


Subject(s)
Aging , Neoplasms , Phenotype , Humans , Neoplasms/genetics , Neoplasms/epidemiology , Male , Female , Aging/genetics , Prospective Studies , Middle Aged , Aged , Incidence , Risk Factors , Genetic Predisposition to Disease , United Kingdom/epidemiology , Adult , Proportional Hazards Models
7.
Cell Discov ; 10(1): 44, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649348

ABSTRACT

Exposure to PM2.5, a harmful type of air pollution, has been associated with compromised male reproductive health; however, it remains unclear whether such exposure can elicit transgenerational effects on male fertility. Here, we aim to examine the effect of paternal exposure to real-world PM2.5 on the reproductive health of male offspring. We have observed that paternal exposure to real-world PM2.5 can lead to transgenerational primary hypogonadism in a sex-selective manner, and we have also confirmed this phenotype by using an external model. Mechanically, we have identified small RNAs (sRNAs) that play a critical role in mediating these transgenerational effects. Specifically, miR6240 and piR016061, which are present in F0 PM sperm, regulate intergenerational transmission by targeting Lhcgr and Nsd1, respectively. We have also uncovered that piR033435 and piR006695 indirectly regulate F1 PM sperm methylation by binding to the 3'-untranslated region of Tet1 mRNA. The reduced expression of Tet1 resulted in hypermethylation of several testosterone synthesis genes, including Lhcgr and Gnas, impaired Leydig cell function and ultimately led to transgenerational primary hypogonadism. Our findings provide insights into the mechanisms underlying the transgenerational effects of paternal PM2.5 exposure on reproductive health, highlighting the crucial role played by sRNAs in mediating these effects. The findings underscore the significance of paternal pre-conception interventions in alleviating the adverse effects of environmental pollutants on reproductive health.

8.
Signal Transduct Target Ther ; 9(1): 73, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528050

ABSTRACT

Patients with advanced gastric cancer typically face a grim prognosis. This phase 1a (dose escalation) and phase 1b (dose expansion) study investigated safety and efficacy of first-line camrelizumab plus apatinib and chemotherapy for advanced gastric or gastroesophageal junction adenocarcinoma. The primary endpoints included maximum tolerated dose (MTD) in phase 1a and objective response rate (ORR) across phase 1a and 1b. Phase 1a tested three dose regimens of camrelizumab, apatinib, oxaliplatin, and S-1. Dose regimen 1: camrelizumab 200 mg on day 1, apatinib 250 mg every other day, oxaliplatin 100 mg/m² on day 1, and S-1 40 mg twice a day on days 1-14. Dose regimen 2: same as dose regimen 1, but oxaliplatin 130 mg/m². Dose regimen 3: same as dose regimen 2, but apatinib 250 mg daily. Thirty-four patients were included (9 in phase 1a, 25 in phase 1b). No dose-limiting toxicities occurred so no MTD was identified. Dose 3 was set for the recommended phase 2 doses and administered in phase 1b. The confirmed ORR was 76.5% (95% CI 58.8-89.3). The median progression-free survival was 8.4 months (95% CI 5.9-not evaluable [NE]), and the median overall survival (OS) was not mature (11.6-NE). Ten patients underwent surgery after treatment and the multidisciplinary team evaluation. Among 24 patients without surgery, the median OS was 19.6 months (7.8-NE). Eighteen patients (52.9%) developed grade ≥ 3 treatment-emergent adverse events. Camrelizumab plus apatinib and chemotherapy showed favorable clinical outcomes and manageable safety for untreated advanced gastric cancer (ChiCTR2000034109).


Subject(s)
Antibodies, Monoclonal, Humanized , Pyridines , Stomach Neoplasms , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Oxaliplatin , Pyridines/therapeutic use , Stomach Neoplasms/drug therapy , Vascular Endothelial Growth Factor Receptor-2 , Drug Therapy, Combination/methods
9.
Article in English | MEDLINE | ID: mdl-38184373

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) has been linked with site-specific upper gastrointestinal (UGI) cancers during the past decades, but associations are still inconclusive. This study aimed to determine the association between T2D, glycaemic traits (random blood glucose and HbA1c) and UGI cancer (oesophageal and gastric cancer). METHODS: In the present study, based on the large-scale prospective cohort of UK Biobank, we included 452 631 eligible participants. T2D was defined according to baseline self-report data, clinical data and biochemistry data. Random blood glucose and HbA1c were measured at baseline. Polygenic risk score was used to classify individuals into different UGI cancer genetic risks. Multivariable Cox regression models were used to estimate HRs and 95% CIs. RESULTS: During a median follow-up of 10.26 years (IQR: 9.47-10.97), 1392 incident UGI cancer cases were identified. T2D was significantly associated with a 44% increment in UGI cancer risk (95% CI 1.22 to 1.70, p<0.001). Moreover, per SD increase in random blood glucose and HbA1c was associated with 7% (95% CI 1.03 to 1.12, p<0.001) and 6% (95% CI 1.04 to 1.09, p<0.001) increased hazards of developing UGI cancer, respectively. Patients with T2D at high genetic risk had a 2.33-fold hazard of UGI cancer (95% CI 1.66 to 3.28, p<0.001), compared with non-T2D individuals at low genetic risk. CONCLUSION: Our results indicate that T2D and elevated levels of glycaemic traits may be risk factors for incident UGI cancer. Individuals with a high genetic risk and T2D have a significantly increased risk of developing UGI cancer.

10.
Cancer Lett ; 585: 216646, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38262497

ABSTRACT

Approximately 51 non-small-cell lung cancer (NSCLC) risk loci have been identified by genome-wide association studies (GWASs). We conducted a high throughput RNA-interference (RNAi) screening to identify the candidate causal genes in NSCLC risk loci. KIAA0391 at 14q13.1 had the highest score and could promote proliferation and metastasis of NSCLC in vitro and in vivo. We next prioritized rs3783313 as a causal variant at 14q13.1, by integrating a large-scale population study consisting of 27,120 lung cancer cases and 27,355 controls, functional annotation, and expression quantitative trait locus (eQTL) analysis. Then we found that rs3783313 could facilitate a promoter-enhancer interaction to upregulate KIAA0391 expression by affecting the affinity of transcription factor NFYA. Mechanistically, KIAA0391 knockdown dramatically influenced pyroptosis-related pathways and increased the expression of CASP1. And KIAA0391 transcriptionally repressed CASP1 by binding to SMAD2 and induced an anti-pyroptosis phenotype, promoting tumorigenesis of NSCLC, which provides new insights and potential target for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Pyroptosis/genetics
11.
Am J Prev Med ; 66(4): 698-706, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38052381

ABSTRACT

INTRODUCTION: Exclusive breastfeeding is advantageous for infant neurodevelopment. Nevertheless, insufficient human milk supply in exclusively breastfed infants may elevate the risk of neonatal jaundice, which can potentially result in neurological harm. Whether mothers should adhere to exclusive breastfeeding in infants with neonatal jaundice remains unclear. METHODS: Data comes from the Jiangsu Birth Cohort (JBC), a prospective and longitudinal birth cohort study in China. A total of 2,577 infants born from November 2017 to March 2021 were included in the analysis. Multivariate linear regression models were used to analyze the associations between breastfeeding status, neonatal jaundice, and their interaction with infant neurodevelopment. Analysis was performed in 2022. RESULTS: Compared with "exclusive breastfeeding," fine motor scores of infants were lower for "mixed feeding" (ßadj, -0.16; 95% CI, -0.29 to -0.03; p=0.016) and "no breastfeeding" (ßadj, -0.41; 95% CI, -0.79 to -0.03; p=0.034). Compared with "no neonatal jaundice," infants with "severe neonatal jaundice" had lower scores for cognition (ßadj, -0.44; 95% CI, -0.66 to -0.23; p<0.001) and fine motor (ßadj, -0.19; 95% CI, -0.35 to -0.03; p=0.024). In infants with severe neonatal jaundice, the termination of exclusive breastfeeding before 6 months was associated with worse cognition (ßadj, -0.28; 95% CI, -0.57 to 0.01), while this association was not observed in those without neonatal jaundice (ßadj, 0.09; 95% CI, -0.26 to 0.43). CONCLUSIONS: Exclusive breastfeeding for the first 6 months is beneficial to the neurodevelopment of infants, especially in those with severe neonatal jaundice.


Subject(s)
Breast Feeding , Jaundice, Neonatal , Infant , Infant, Newborn , Female , Humans , Cohort Studies , Prospective Studies , Jaundice, Neonatal/epidemiology , Jaundice, Neonatal/etiology , Mothers
12.
Cancer ; 130(6): 913-926, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38055287

ABSTRACT

BACKGROUND: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated. METHODS: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established. The prediction models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the methylation markers, which were then replicated in independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, and transcriptomics and investigation of the potential regulation pathways. RESULTS: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC risk (Bonferroni-corrected p ≤ 1.67 × 10-6 ) were originally identified. Of these, 16 CpGs remained significant in the validation stage (Bonferroni-corrected p ≤ 1.28 × 10-3 ), including four novel CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be involved in regulatory pathways of NSCLC risk were identified. CONCLUSIONS: Sixteen promising DNA methylation markers associated with NSCLC were identified. Changes of the methylation level at these CpGs might influence the development of NSCLC by regulating the expression of genes nearby. PLAIN LANGUAGE SUMMARY: The epigenetic consequences of DNA methylation in lung cancer development are still largely unknown. This study used summary data of large-scale genome-wide association studies to investigate the associations between genetically predicted levels of methylation biomarkers and non-small cell lung cancer risk at the first time. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. These findings will provide a unique insight into the epigenetic susceptibility mechanisms of lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adult , Humans , Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Lung Neoplasms/genetics , Genome-Wide Association Study , Epigenesis, Genetic , Biomarkers , CpG Islands
13.
Carcinogenesis ; 45(1-2): 23-34, 2024 02 12.
Article in English | MEDLINE | ID: mdl-37950445

ABSTRACT

Long non-coding RNAs (lncRNAs) serve as vital candidates to mediate cancer risk. Here, we aimed to identify the risk single-nucleotide polymorphisms (SNPs)-induced lncRNAs and to investigate their roles in gastric cancer (GC) development. Through integrating the differential expression analysis of lncRNAs in GC tissues and expression quantitative trait loci analysis in normal stomach tissues and GC tissues, as well as genetic association analysis based on GC genome-wide association studies and an independent validation study, we identified four lncRNA-related SNPs consistently associated with GC risk, including SNHG7 [odds ratio (OR) = 1.16, 95% confidence interval (CI): 1.09-1.23], NRAV (OR = 1.11, 95% CI: 1.05-1.17), LINC01082 (OR = 1.16, 95% CI: 1.08-1.22) and FENDRR (OR = 1.16, 95% CI: 1.07-1.25). We further found that a functional SNP rs6489786 at 12q24.31 increases binding of MEOX1 or MEOX2 at a distal enhancer and results in up-regulation of NRAV. The functional assays revealed that NRAV accelerates GC cell proliferation while inhibits GC cell apoptosis. Mechanistically, NRAV decreases the expression of key subunit genes through the electron transport chain, thereby driving the glucose metabolism reprogramming from aerobic respiration to glycolysis. These findings suggest that regulating lncRNA expression is a crucial mechanism for risk-associated variants in promoting GC development.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Genome-Wide Association Study/methods , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Metabolic Reprogramming , Glucose , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
14.
Int J Cancer ; 154(5): 807-815, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37846649

ABSTRACT

The proportion of lung cancer in never smokers is rising, especially among Asian women, but there is no effective early detection tool. Here, we developed a polygenic risk score (PRS), which may help to identify the population with higher risk of lung cancer in never-smoking women. We first performed a large GWAS meta-analysis (8595 cases and 8275 controls) to systematically identify the susceptibility loci for lung cancer in never-smoking Asian women and then generated a PRS using GWAS datasets. Furthermore, we evaluated the utility and effectiveness of PRS in an independent Chinese prospective cohort comprising 55 266 individuals. The GWAS meta-analysis identified eight known loci and a novel locus (5q11.2) at the genome-wide statistical significance level of P < 5 × 10-8 . Based on the summary statistics of GWAS, we derived a polygenic risk score including 21 variants (PRS-21) for lung cancer in never-smoking women. Furthermore, PRS-21 had a hazard ratio (HR) per SD of 1.29 (95% CI = 1.18-1.41) in the prospective cohort. Compared with participants who had a low genetic risk, those with an intermediate (HR = 1.32, 95% CI: 1.00-1.72) and high (HR = 2.09, 95% CI: 1.56-2.80) genetic risk had a significantly higher risk of incident lung cancer. The addition of PRS-21 to the conventional risk model yielded a modest significant improvement in AUC (0.697 to 0.711) and net reclassification improvement (24.2%). The GWAS-derived PRS-21 significantly improves the risk stratification and prediction accuracy for incident lung cancer in never-smoking Asian women, demonstrating the potential for identification of high-risk individuals and early screening.


Subject(s)
Lung Neoplasms , Humans , Female , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Genetic Risk Score , Genetic Predisposition to Disease , Cohort Studies , Prospective Studies , Genome-Wide Association Study , Risk Factors , Smoking/genetics , Smoking/epidemiology , China
17.
Int J Epidemiol ; 52(6): 1815-1825, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-37676847

ABSTRACT

BACKGROUND: The role of genetic background underlying the disparity of relative risk of smoking and lung cancer between European populations and East Asians remains unclear. METHODS: To assess the role of ethnic differences in genetic factors associated with smoking-related risk of lung cancer, we first constructed ethnic-specific polygenic risk scores (PRSs) to quantify individual genetic risk of lung cancer in Chinese and European populations. Then, we compared genetic risk and smoking as well as their interactions on lung cancer between two cohorts, including the China Kadoorie Biobank (CKB) and the UK Biobank (UKB). We also evaluated the absolute risk reduction over a 5-year period. RESULTS: Differences in compositions and association effects were observed between the Chinese-specific PRSs and European-specific PRSs, especially for smoking-related loci. The PRSs were consistently associated with lung cancer risk, but stronger associations were observed in smokers of the UKB [hazard ratio (HR) 1.26 vs 1.15, P = 0.028]. A significant interaction between genetic risk and smoking on lung cancer was observed in the UKB (RERI, 11.39 (95% CI, 7.01-17.94)], but not in the CKB. Obvious higher absolute risk was observed in nonsmokers of the CKB, and a greater absolute risk reduction was found in the UKB (10.95 vs 7.12 per 1000 person-years, P <0.001) by comparing heavy smokers with nonsmokers, especially for those at high genetic risk. CONCLUSIONS: Ethnic differences in genetic factors and the high incidence of lung cancer in nonsmokers of East Asian ethnicity were involved in the disparity of smoking-related risk of lung cancer.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Prospective Studies , Smoking/adverse effects , Smoking/genetics , Risk Factors , Tobacco Smoking , Genetic Risk Score
18.
Am J Hum Genet ; 110(9): 1574-1589, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37562399

ABSTRACT

Splicing quantitative trait loci (sQTLs) have been demonstrated to contribute to disease etiology by affecting alternative splicing. However, the role of sQTLs in the development of non-small-cell lung cancer (NSCLC) remains unknown. Thus, we performed a genome-wide sQTL study to identify genetic variants that affect alternative splicing in lung tissues from 116 individuals of Chinese ancestry, which resulted in the identification of 1,385 sQTL-harboring genes (sGenes) containing 378,210 significant variant-intron pairs. A comprehensive characterization of these sQTLs showed that they were enriched in actively transcribed regions, genetic regulatory elements, and splicing-factor-binding sites. Moreover, sQTLs were largely distinct from expression quantitative trait loci (eQTLs) and showed significant enrichment in potential risk loci of NSCLC. We also integrated sQTLs into NSCLC GWAS datasets (13,327 affected individuals and 13,328 control individuals) by using splice-transcriptome-wide association study (spTWAS) and identified alternative splicing events in 19 genes that were significantly associated with NSCLC risk. By using functional annotation and experiments, we confirmed an sQTL variant, rs35861926, that reduced the risk of lung adenocarcinoma (rs35861926-T, OR = 0.88, 95% confidence interval [CI]: 0.82-0.93, p = 1.87 × 10-5) by promoting FARP1 exon 20 skipping to downregulate the expression level of the long transcript FARP1-011. Transcript FARP1-011 promoted the migration and proliferation of lung adenocarcinoma cells. Overall, our study provided informative lung sQTL resources and insights into the molecular mechanisms linking sQTL variants to NSCLC risk.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Quantitative Trait Loci/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Genome-Wide Association Study/methods , Lung Neoplasms/genetics , Alternative Splicing/genetics , Adenocarcinoma of Lung/genetics , Polymorphism, Single Nucleotide/genetics
19.
Nutrients ; 15(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37432247

ABSTRACT

The aim of this study was to generate a polygenic risk score (PRS) for type 2 diabetes (T2D) and test whether it could be used in identifying high-risk individuals for lifestyle intervention in a Chinese cohort. We genotyped 80 genetic variants among 5024 participants without non-communicable diseases at baseline in the Wuxi Non-Communicable Diseases cohort (Wuxi NCDs cohort). During the follow-up period of 14 years, 440 cases of T2D were newly diagnosed. Using Cox regression, we found that the PRS of 46 SNPs identified by the East Asians was relevant to the future T2D. Participants with a high PRS (top quintile) had a two-fold higher risk of T2D than the bottom quintile (hazard ratio: 2.06, 95% confidence interval: 1.42-2.97). Lifestyle factors were considered, including cigarette smoking, alcohol consumption, physical exercise, diet, body mass index (BMI), and waist circumference (WC). Among high-PRS individuals, the 10-year incidence of T2D slumped from 6.77% to 3.28% for participants having ideal lifestyles (4-6 healthy lifestyle factors) compared with poor lifestyles (0-2 healthy lifestyle factors). When integrating the high PRS, the 10-year T2D risk of low-clinical-risk individuals exceeded that of high-clinical-risk individuals with a low PRS (3.34% vs. 2.91%). These findings suggest that the PRS of 46 SNPs could be used in identifying high-risk individuals and improve the risk stratification defined by traditional clinical risk factors for T2D. Healthy lifestyles can reduce the risk of a high PRS, which indicates the potential utility in early screening and precise prevention.


Subject(s)
Diabetes Mellitus, Type 2 , Noncommunicable Diseases , Humans , Cohort Studies , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , East Asian People , Life Style , Prospective Studies , Risk Factors , Multifactorial Inheritance
20.
J Transl Med ; 21(1): 471, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454089

ABSTRACT

BACKGROUND: Blood biomarkers for multiple pathways, such as inflammatory response, lipid metabolism, and hormonal regulation, have been suggested to influence the risk of mortality. However, few studies have systematically evaluated the combined predictive ability of blood biomarkers for mortality risk. METHODS: We included 267,239 participants from the UK Biobank who had measurements of 28 blood biomarkers and were free of cardiovascular disease (CVD) and cancer at baseline (2006-2010). We developed sex-specific blood biomarker scores for predicting all-cause mortality risk in a training set of 247,503 participants from England and Wales, and validated the results in 19,736 participants from Scotland. Cox and LASSO regression analyses were performed to identify independent predictors for men and women separately. Discrimination and calibration were evaluated by C-index and calibration plots, respectively. We also assessed mediating effects of the biomarkers on the association between traditional risk factors (current smoking, obesity, physical inactivity, hypertension, diabetes) and mortality. RESULTS: A total of 13 independent predictive biomarkers for men and 17 for women were identified and included in the score development. Compared to the lowest tertile of the score, the highest tertile showed a hazard ratio of 5.36 (95% confidence interval [CI] 5.04-5.71) in men and 4.23 (95% CI 3.87-4.62) in women for all-cause mortality. In the validation set, the score yielded a C-index of 0.73 (95% CI 0.72-0.75) in men and 0.70 (95% CI 0.68-0.73) in women for all-cause mortality; it was also predictive of CVD (C-index of 0.76 in men and 0.79 in women) and cancer (C-index of 0.70 in men and 0.67 in women) mortality. Moreover, the association between traditional risk factors and all-cause mortality was largely mediated by cystatin C, C-reactive protein, 25-hydroxyvitamin D, and hemoglobin A1c. CONCLUSIONS: We established sex-specific blood biomarker scores for predicting all-cause and cause-specific mortality in the general population, which hold the potential to identify high-risk individuals and improve targeted prevention of premature death.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Hypertension , Male , Humans , Female , Risk Factors , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL