Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Clin Res Hepatol Gastroenterol ; 48(3): 102289, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307254

ABSTRACT

Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Dysregulation of ribosome biogenesis increases the risk of cancer. RPF2 (ribosome production factor 2 homolog), a member of the BRIX family, is involved in ribosome biogenesis. However, the biological functions of RPF2 in HCC remain unclear. This study aims to evaluate the function of RPF2 and its clinical significance in HCC. We collected 45 pairs of HCC/adjacent samples and 291 HCC samples. These samples were used to perform immunohistochemical analysis and western blot. Six cell lines were used to perform western blot, and two of cell lines, SMCC-7721 and SNU449, were subjected to CCK-8, wound healing and transwell assays. Immunofluorescence staining was executed in SMCC-7721 cells. The protein levels of RPF2 were higher in HCC tissues than in adjacent tissues. Immunofluorescence staining showed that the RPF2 protein was located in the nucleuses, especially the nucleolus. Furthermore, the immunohistochemical analysis showed that high expression levels of nuclear RPF2 correlated with poor prognosis, vascular invasion, liver cirrhosis and tumor size. Cell experiments showed that overexpression of RPF2 promoted cell proliferation, migration and invasion, while knockdown of RPF2 tended to show the opposite effect. This is the first report that RPF2 is involved in HCC progression. The levels of RPF2 were significantly high in HCC tumors and had a side effect on prognosis in HCC patients. RPF2 has the potential to be a useful marker for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Clinical Relevance , Prognosis , Ribosomes/metabolism , Ribosomes/pathology , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
Gastroenterology ; 166(6): 1130-1144.e8, 2024 06.
Article in English | MEDLINE | ID: mdl-38262581

ABSTRACT

BACKGROUND & AIMS: Despite the increasing number of treatment options available for liver cancer, only a small proportion of patients achieve long-term clinical benefits. Here, we aim to develop new therapeutic approaches for liver cancer. METHODS: A compound screen was conducted to identify inhibitors that could synergistically induce senescence when combined with cyclin-dependent kinase (CDK) 4/6 inhibitor. The combination effects of CDK4/6 inhibitor and exportin 1 (XPO1) inhibitor on cellular senescence were investigated in a panel of human liver cancer cell lines and multiple liver cancer models. A senolytic drug screen was performed to identify drugs that selectively killed senescent liver cancer cells. RESULTS: The combination of CDK4/6 inhibitor and XPO1 inhibitor synergistically induces senescence of liver cancer cells in vitro and in vivo. The XPO1 inhibitor acts by causing accumulation of RB1 in the nucleus, leading to decreased E2F signaling and promoting senescence induction by the CDK4/6 inhibitor. Through a senolytic drug screen, cereblon (CRBN)-based proteolysis targeting chimera (PROTAC) ARV-825 was identified as an agent that can selectively kill senescent liver cancer cells. Up-regulation of CRBN was a vulnerability of senescent liver cancer cells, making them sensitive to CRBN-based PROTAC drugs. Mechanistically, we find that ubiquitin specific peptidase 2 (USP2) directly interacts with CRBN, leading to the deubiquitination and stabilization of CRBN in senescent liver cancer cells. CONCLUSIONS: Our study demonstrates a striking synergy in senescence induction of liver cancer cells through the combination of CDK4/6 inhibitor and XPO1 inhibitor. These findings also shed light on the molecular processes underlying the vulnerability of senescent liver cancer cells to CRBN-based PROTAC therapy.


Subject(s)
Adaptor Proteins, Signal Transducing , Cellular Senescence , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Exportin 1 Protein , Karyopherins , Liver Neoplasms , Protein Kinase Inhibitors , Receptors, Cytoplasmic and Nuclear , Ubiquitin-Protein Ligases , Humans , Cellular Senescence/drug effects , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Ubiquitin-Protein Ligases/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Animals , Retinoblastoma Binding Proteins/metabolism , Retinoblastoma Binding Proteins/genetics , Drug Synergism , Senotherapeutics/pharmacology , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Proteolysis/drug effects , Hydrazines/pharmacology , Hydrazines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Hep G2 Cells , Mice , Piperazines , Pyridines , Triazoles
3.
Cancer ; 130(S8): 1424-1434, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38217532

ABSTRACT

BACKGROUND: Immunohistochemistry (IHC) is an essential technique in surgical and clinical pathology for detecting diagnostic, prognostic, and predictive biomarkers for personalized cancer therapy. However, the lack of standardization and reference controls results in poor reproducibility, and a reliable tool for IHC quantification is urgently required. The objective of this study was to describe a novel approach in which H3F3B (histone H3, family 3B) can be used as an internal reference standard to quantify protein expression levels using IHC. METHODS: The authors enrolled 89 patients who had human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). They used a novel IHC-based assay to measure protein expression using H3F3B as the internal reference standard. H3F3B was uniformly expressed at the protein level in all tumor regions in cancer tissues. HER2 expression levels were measured with the H-score using HALO software. RESULTS: Kaplan-Meier analysis indicated that, among patients who had HER2-positive BC in The Cancer Genome Atlas data set and the authors' data set, the subgroup with low HER2 expression had a significantly better prognosis than the subgroup with high HER2 expression. Furthermore, the authors observed that HER2 expression levels were precisely evaluated using the proposed method, which can classify patients who are at higher risk of HER2-positive BC to receive trastuzumab-based adjuvant therapy. Dual-color IHC with H3F3B is an excellent tool for internal and external quality control of HER2 expression assays. CONCLUSIONS: The proposed IHC-based quantification method accurately assesses HER2 expression levels and provides insights for predicting clinical prognosis in patients with HER2-positive BC who receive trastuzumab-based adjuvant therapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Histones , Immunohistochemistry , Reproducibility of Results , Receptor, ErbB-2/genetics , Trastuzumab/therapeutic use , Reference Standards , Biomarkers, Tumor/metabolism
4.
Cancer Cell ; 41(10): 1817-1828.e9, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37683639

ABSTRACT

The dysregulated expression of immune checkpoint molecules enables cancer cells to evade immune destruction. While blockade of inhibitory immune checkpoints like PD-L1 forms the basis of current cancer immunotherapies, a deficiency in costimulatory signals can render these therapies futile. CD58, a costimulatory ligand, plays a crucial role in antitumor immune responses, but the mechanisms controlling its expression remain unclear. Using two systematic approaches, we reveal that CMTM6 positively regulates CD58 expression. Notably, CMTM6 interacts with both CD58 and PD-L1, maintaining the expression of these two immune checkpoint ligands with opposing functions. Functionally, the presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and response to PD-L1-PD-1 blockade. Collectively, these findings provide fundamental insights into CD58 regulation, uncover a shared regulator of stimulatory and inhibitory immune checkpoints, and highlight the importance of tumor-intrinsic CMTM6 and CD58 expression in antitumor immune responses.


Subject(s)
B7-H1 Antigen , MARVEL Domain-Containing Proteins , Myelin Proteins , Neoplasms , T-Lymphocytes , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Immunity , Immunotherapy , Neoplasms/drug therapy , Neoplasms/immunology , T-Lymphocytes/immunology , Myelin Proteins/metabolism , MARVEL Domain-Containing Proteins/metabolism
5.
Cancers (Basel) ; 14(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36428802

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer, of which the incidence is increasing worldwide with a high mortality rate. Bioactive peptides are considered a significant class of natural medicines. We applied mass spectrometry-based peptidomic analysis to explore the peptide profile of human renal clear cell carcinoma and adjacent normal tissues. A total of 18,031 peptides were identified, of which 105 unique peptides were differentially expressed (44 were up-regulated and 61 were down-regulated in ccRCC tissues). Through bioinformatic analysis, we finally selected one peptide derived from the HSPB1 protein (amino acids 12-35 of the N-terminal region of HSPB1). Next, we fused this peptide to the HIV-Tat, generated a novel peptide named Tat-hspb1, and found that Tat-hspb1 inhibited ccRCC cells' viability while being less cytotoxic to normal epithelial cells. Furthermore, Tat-hspb1 induced apoptosis and inhibited the proliferation and migration of ccRCC cells. Furthermore, we demonstrated that Tat-hspb1 was predominantly localized in lysosomes after entering the ccRCC cell and induced lysosomal membrane permeabilization (LMP) and the release of cathepsin D from lysosomes. Taken together, Tat-hspb1 has the potential to serve as a new anticancer drug candidate.

6.
Ann Hepatol ; 27(6): 100744, 2022.
Article in English | MEDLINE | ID: mdl-35964908

ABSTRACT

INTRODUCTION AND OBJECTIVES: Posthepatectomy liver failure (PHLF) is a serious complication after hepatectomy, and its effective methods for preoperative prediction are lacking. Here, we aim to identify predictive factors and build a nomogram to evaluate patients' risk of developing PHLF. PATIENTS AND METHODS: A retrospective review of a training cohort, including 199 patients who underwent hepatectomy at the Shanghai Eastern Hepatobiliary Surgery Hospital, was conducted. Independent risk variables for PHLF were identified using multivariate analysis of perioperative variables, and a nomogram was used to build a predictive model. To test the predictive power, a prospective study in which a validation cohort of 71 patients was evaluated using the nomogram. The prognostic value of this nomogram was evaluated by the C-index. RESULTS: Independent risk variables for PHLF were identified from perioperative variables. In multivariate analysis of the training cohort, tumor number, Pringle maneuver, blood loss, preoperative platelet count, postoperative ascites and use of anticoagulant medications were determined to be key risk factors for the development of PHLF, and they were selected for inclusion in our nomogram. The nomogram showed a 0.911 C-index for the training cohort. In the validation cohort, the nomogram also showed good prognostic value for predicting PHLF. The validation cohort was used with similarly successful results to evaluate risk in two previously published study models with calculated C-indexes of 0.718 and 0.711. CONCLUSION: Our study establishes for the first time a novel nomogram that can be used to identify patients at risk of developing PHLF.


Subject(s)
Carcinoma, Hepatocellular , Liver Failure , Liver Neoplasms , Humans , Hepatectomy/adverse effects , Nomograms , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Prospective Studies , Anticoagulants/adverse effects , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , China/epidemiology , Liver Failure/diagnosis , Liver Failure/etiology , Liver Failure/prevention & control , Risk Factors , Retrospective Studies
7.
Cancer Manag Res ; 14: 969-980, 2022.
Article in English | MEDLINE | ID: mdl-35283645

ABSTRACT

Background: RBM10's function in hepatocellular carcinoma (HCC) has rarely been addressed. We intend to explore the prognostic significance and therapeutic meaning of RBM10 in HCC in this study. Methods: Multiple common databases were integrated to analyze the expression status and prognostic meaning of RBM10 in HCC. The relationship between RBM10 mRNA level and clinical features was also assessed. Multiple enrichment analyses of the differentially expressed genes between RBM10 high- and low- transcription groups were constructed by using R software (version 4.0.2). A Search Tool for Retrieval of Interacting Genes database was used to construct the protein-protein interaction network between RBM10 and other proteins. A tumor immune estimation resource database was employed to identify the relationship between RBM10 expression and immune cell infiltrates. The prognostic value of RBM10 expression was validated in our HCC cohort by immunohistochemistry test. Results: The transcription of RBM10 mRNA was positively correlated with tumor histologic grade (p < 0.001), T classification (p < 0.001), and tumor stage (p < 0.001). High transcription of RBM10 in HCC predicted a dismal overall survival (p = 0.0037) and recurrence-free survival (p < 0.001). Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and Gene Set Enrichment Analysis all revealed that RBM10 was involved in the regulation of cell cycle, DNA replication, and immune-related pathways. Tumor immune estimation analysis revealed that RBM10 transcription was positively related to multiple immune cell infiltrates and the expressions of PD-1 and PD-L1. Conclusion: RBM10 was demonstrated to be a dismal prognostic factor and a potential biomarker for immune therapy in HCC in that it may be involved in the immune-related signaling pathways.

8.
ACS Appl Mater Interfaces ; 14(1): 1994-2005, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34963290

ABSTRACT

Additive manufacturing via fused deposition modeling (FDM) has become one of the most widely used technologies owing to its ease of operation and effective cost. However, the disappointing interlayer adhesion produced by FDM often results in inferior mechanical properties, which has become a technical bottleneck for industrial production. Herein, we demonstrate a facile and efficient printing strategy to enhance interlayer adhesion by introducing a self-healing mechanism into the printing material, thereby concurrently enhancing the mechanical properties and isotropy of the printed products. This strategy relies on the self-healing property of three-dimensional-printing materials. This self-healing property is endowed by introducing dynamic urea bonds on the thermoplastic polyurethane (TPU) molecular chains, and then, such dynamic bonds can be activated through thermal heating. Accordingly, the synthesized TPU reveals an efficient self-healing property and excellent printability owing to the existence of dynamic reversible covalent bonds. Moreover, objects with complex structures can be split and printed and then assembled using this strategy, avoiding the need for supporting structures and realizing the rapid prototyping of large-sized objects. The printing strategy proposed paves a candidate way to overcome the current challenges in obtaining high-quality products via FDM.

9.
Anticancer Drugs ; 33(1): e500-e506, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34321420

ABSTRACT

Phosphoglycerate mutase (PGAM) is a critical enzyme in glycolysis. PGAM2 is abundant in several types of tissues and malignant tumours. However, there is limited information regarding their clinicopathological significance in dysplastic nodules and hepatocellular carcinoma (HCC). This study aims to investigate the prognostic value of PGAM2 as a new biomarker for HCC. The PGAM2 expression level was evaluated by immunohistochemistry in liver cirrhosis (n = 10), low-grade dysplastic nodules (n = 15), high-grade dysplastic nodules (n = 15) and HCCs (n = 20) and 178 pairs of HCC and adjacent peritumoral liver tissues. We selected X-tile software for counting cut-point based on the outcomes for prognosis analysis, and used Kaplan-Meier analysis and Cox regression analysis can assess the prognosis of clinicopathologic parameters. Nuclear PGAM2 was significantly overexpressed in peritumoral liver tissues compared with HCC tissues (P = 0.0010). Kaplan-Meier analyses of 178 HCC samples revealed that nuclear PGAM2's high expression level, but not cytoplasmic PGAM2, was significantly related to good overall survival rate (OS). In addition, univariate and multivariate Cox analyses indicated nuclear PGAM2 expression could be regarded as valuable predictors for OS in HCC. PGAM2 was highly expressed in HCC tissues than liver cirrhosis tissues, and nuclear PGAM2's high expression might demonstrate HCC patients have poor postoperative results. Thus, nuclear PGAM2 can be regarded as valuable predictors for OS in HCC patients after surgery.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Phosphoglycerate Mutase/biosynthesis , Biomarkers, Tumor , Carcinoma, Hepatocellular/mortality , Female , Humans , Kaplan-Meier Estimate , Liver Cirrhosis/pathology , Liver Neoplasms/mortality , Male , Middle Aged , Prognosis , Regression Analysis
10.
Comput Math Methods Med ; 2021: 2085173, 2021.
Article in English | MEDLINE | ID: mdl-34760021

ABSTRACT

PURPOSE: Sepsis becomes the main death reason in hospitals with rising incidence, causing a growing economic and medical burden. However, the genes related to the pathogenesis and prognosis of sepsis are still unclear, which is a problem that needs to be solved urgently. MATERIALS AND METHODS: Gene expression profiles of GSE69528 were obtained from the National Center for Biotechnology Information. Limma software package got employed to search for differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were used for enrichment analysis. Protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes (STRING) database. RESULTS: We screened 101 DEGs, containing 81 upregulated DEGs and 20 downregulated DEGs. GO analysis demonstrated that the upregulated DEGs were chiefly concentrated in negative regulation of response to interferon-gamma and regulation of granulocyte differentiation. KEGG analysis revealed that the pathways of upregulated DEGs were concentrated in prion diseases, complement and coagulation cascades, and Staphylococcus aureus infection. The PPI network constructed by upregulated DEGs contained 67 nodes (proteins) and 110 edges (interactions). Analysis of bioinformatics results showed that CEACAM8, MPO, and RETN were hub genes of sepsis. CONCLUSION: Our analysis reveals a series of signal pathways and key genes related to the mechanism of sepsis, which are promising biotargets and biomarkers of sepsis.


Subject(s)
Sepsis/genetics , Case-Control Studies , Computational Biology , Gene Ontology , Gene Regulatory Networks , Humans , Melioidosis/etiology , Melioidosis/genetics , Melioidosis/metabolism , Oligonucleotide Array Sequence Analysis , Prognosis , Protein Interaction Maps/genetics , Sepsis/etiology , Sepsis/metabolism , Signal Transduction , Software , Transcriptome
11.
Hepatology ; 73(2): 644-660, 2021 02.
Article in English | MEDLINE | ID: mdl-32298475

ABSTRACT

BACKGROUND AND AIMS: Peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator-1α (PGC1α) is a key regulator of mitochondrial biogenesis and respiration. PGC1α is involved in the carcinogenesis, progression, and metabolic state of cancer. However, its role in the progression of hepatocellular carcinoma (HCC) remains unclear. APPROACH AND RESULTS: In this study, we observed that PGC1α was down-regulated in human HCC. A clinical study showed that low levels of PGC1α expression were correlated with poor survival, vascular invasion, and larger tumor size. PGC1α inhibited the migration and invasion of HCC cells with both in vitro experiments and in vivo mouse models. Mechanistically, PGC1α suppressed the Warburg effect through down-regulation of pyruvate dehydrogenase kinase isozyme 1 (PDK1) mediated by the WNT/ß-catenin pathway, and inhibition of the WNT/ß-catenin pathway was induced by activation of PPARγ. CONCLUSIONS: Low levels of PGC1α expression indicate a poor prognosis for HCC patients. PGC1α suppresses HCC metastasis by inhibiting aerobic glycolysis through regulating the WNT/ß-catenin/PDK1 axis, which depends on PPARγ. PGC1α is a potential factor for predicting prognosis and a therapeutic target for HCC patients.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/secondary , Liver Neoplasms/pathology , Lung Neoplasms/secondary , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Biomarkers, Tumor/blood , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Liver/pathology , Liver/surgery , Liver Neoplasms/blood , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Male , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/blood , Prognosis , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Warburg Effect, Oncologic , Wnt Signaling Pathway/genetics , Xenograft Model Antitumor Assays
12.
Elife ; 92020 10 05.
Article in English | MEDLINE | ID: mdl-33016874

ABSTRACT

The dependency of cancer cells on glutamine may be exploited therapeutically as a new strategy for treating cancers that lack druggable driver genes. Here we found that human liver cancer was dependent on extracellular glutamine. However, targeting glutamine addiction using the glutaminase inhibitor CB-839 as monotherapy had a very limited anticancer effect, even against the most glutamine addicted human liver cancer cells. Using a chemical library, we identified V-9302, a novel inhibitor of glutamine transporter ASCT2, as sensitizing glutamine dependent (GD) cells to CB-839 treatment. Mechanically, a combination of CB-839 and V-9302 depleted glutathione and induced reactive oxygen species (ROS), resulting in apoptosis of GD cells. Moreover, this combination also showed tumor inhibition in HCC xenograft mouse models in vivo. Our findings indicate that dual inhibition of glutamine metabolism by targeting both glutaminase and glutamine transporter ASCT2 represents a potential novel treatment strategy for glutamine addicted liver cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Glutamine/metabolism , Liver Neoplasms/metabolism , Amino Acid Transport System ASC/antagonists & inhibitors , Animals , Apoptosis/drug effects , Benzeneacetamides/pharmacology , Carrier Proteins/antagonists & inhibitors , Cell Line, Tumor , Drug Synergism , Glutaminase/antagonists & inhibitors , Humans , Mice , Minor Histocompatibility Antigens , Reactive Oxygen Species/metabolism , Thiadiazoles/pharmacology , Xenograft Model Antitumor Assays
13.
J Gastroenterol ; 55(12): 1171-1182, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33089343

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is the second most common tumor in primary liver cancer, but the prognostic factors associated with long-term outcomes after surgical resection remain poorly defined. This study aimed to develop a novel prognostic classifier for patients with ICC after surgery. METHODS: Using a proteomics approach, we screened tumor markers that up-regulated in ICC tissues, and narrowed down by bioinformatics analysis, western blot and immunohistochemistry. Prognostic markers were identified using Cox regression analyses in primary training cohort and the predictive models for time to recurrence (TTR) were established. The predictive accuracy of predictive model was validated in external validation cohort and prospective validation cohort. MTT assay, clonal formation assay and trans-well assays were used to verify the effect on the proliferation and migration in ICC cell line. RESULTS: Triosephosphate isomerise (TPI1) was significantly up-regulated in ICC tissues and Kaplan-Meier analysis reveals that higher TPI1 expression was strongly correlated with higher recurrence rate of ICC patients. In the primary training cohort, mean TTR was significantly longer (p < 0.0001) than in the low-risk group (26.9 months for TTR, 95% CI 22.4-31.5) than in the high-risk group (14.5 months for TTR, 95% CI 10.6-18.4). Similar results were observed in two validation cohorts. In addition, a nomogram to predict recurrence was developed. Moreover, Knockdown of TPI1 by shRNA inhibited ICC cell growth, colony information, migration, invasion in vitro. CONCLUSIONS: Current prognostic models were accurate in predicting recurrence for ICC patients after surgical resection.


Subject(s)
Bile Duct Neoplasms/pathology , Cholangiocarcinoma/pathology , Proteomics/methods , Triose-Phosphate Isomerase/genetics , Bile Duct Neoplasms/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cholangiocarcinoma/genetics , Cohort Studies , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Nomograms , Prognosis , Prospective Studies , Time Factors , Up-Regulation
14.
Cancer Manag Res ; 12: 5537-5547, 2020.
Article in English | MEDLINE | ID: mdl-32753967

ABSTRACT

PURPOSE: This study aimed to propose an effective quantitative pathological scoring system and to establish nomogram to assess the stage of cirrhosis and predict postoperative survival of hepatocellular carcinoma (HCC) with cirrhosis patients after hepatectomy. METHODS: The scoring system was based on a retrospective study on 163 patients who underwent partial hepatectomy for HCC with cirrhosis. The clinicopathological and follow-up data of 163 HCC with cirrhosis patients who underwent hepatectomy in our hospital from 2010 to 2014 were retrospectively reviewed. A scoring system was established based on the total value of independent predictive factors of cirrhosis. The results were validated using 97 patients operated on from 2011 to 2015 at the same institution. Nomogram was then formulated using a multivariate Cox proportional hazards model to analyze. RESULTS: The scoring system was ultimately composed of 4 independent predictive factors and was divided into 3 levels. The new cirrhosis system score strongly correlated with Child-Pugh score (r=0.8058, P<0.0001) 3 months after surgery; higher cirrhosis system scores predicted poorer liver function and stronger liver damage 3 months after surgery. Then, a four-factor nomogram for survival prediction was established. The concordance indices were 0.79 for the survival-prediction nomogram. The calibration curves showed good agreement between predictions by the nomogram and actual survival outcomes. CONCLUSION: This new scoring system of cirrhosis can help us predict the liver function and liver injury 3 months after surgery, and the nomogram enabled accurate predictions of risk of overall survival in patients of HCC with cirrhosis after hepatectomy.

15.
Clin Cancer Res ; 26(16): 4302-4312, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32332018

ABSTRACT

PURPOSE: To identify a predictive biomarker of sorafenib for hepatocellular carcinoma personalized therapy. EXPERIMENTAL DESIGN: The patients treated with or without sorafenib after hepatocellular carcinoma recurrence from multicenters were matched with propensity score matching analysis. The expression levels of Fms-like tyrosine kinase 3 (FLT3) in hepatocellular carcinoma specimens of the matched patients (n = 276) were analyzed by IHC. The optimal cut-off point of FLT3 levels for overall survival (OS) was defined via Cutoff Finder. Subgroup analysis of OS was employed to investigate the association between FLT3 levels and sorafenib benefit. The predictive value was assessed via Cox regression models with an interaction term. Hepatocellular carcinoma and paratumoral normal tissues were used to investigate the expression and copy-number variation of FLT3. Patient-derived xenograft (PDX) models were used to confirm the association between FLT3 levels and sorafenib response. RESULTS: Patients with FLT3-high hepatocellular carcinoma exhibited a superior OS upon sorafenib treatment. High FLT3 levels were predictive of sorafenib benefit in terms of OS (P interaction = 0.00006). Copy-number losses and decreased expression of FLT3 in hepatocellular carcinoma were detected in about 64% of patients. Moreover, the PDXs derived from tumors with high FLT3 levels also displayed a better response to sorafenib. CONCLUSIONS: Sorafenib may be able to delay tumor progression in patients with FLT3-high hepatocellular carcinoma. This potential biomarker needs to be further validated in independent cohorts prior to helping stratify patients for precision therapy in advanced hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Sorafenib/administration & dosage , fms-Like Tyrosine Kinase 3/genetics , Animals , Antineoplastic Agents/administration & dosage , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Middle Aged
16.
Braz J Med Biol Res ; 53(4): e9114, 2020.
Article in English | MEDLINE | ID: mdl-32294701

ABSTRACT

This study aimed to explore the prognostic role of dipeptidyl peptidase 4 (DPP4) expression in hepatocellular carcinoma (HCC). DPP4 expression was measured in formalin-fixed paraffin-embedded specimens that were gathered from 327 HCC patients. Immunohistochemistry analyses were utilized to examine DPP4 expression characteristics and prognostic values (overall survival (OS) and time to recurrence) of DDP4 in HCC tissues. In addition, a patient-derived xenograft (PDX) model was used to assess the correlation between DPP4 expression and tumor growth in vivo. DPP4 was expressed in low levels in HCC tissues in contrast to paired peritumoral tissues (38 cases were down-regulated in a total of 59 cases, 64.4%. P=0.0202). DPP4 expression was significantly correlated with TNM stage (P=0.038), tumor number (P=0.035), and vascular invasion (P=0.024), and significantly reduced in patients who were in TNM stages II and III-V, with multiple tumors, and with microvascular invasion compared to patients with TNM stage I, single tumor, and no microvascular invasion. Notably, HCC tissues with low expression of DPP4 had poor OS (P=0.016) compared with HCC tissues with high expression of DPP4, and results from PDX model showed that tumor growth was significantly faster in HCC patients that lowly expressed DPP4 compared to those with highly expressed DPP4. Our findings suggested that low levels of DPP4 could impact the aggressiveness of HCC and contribute to a poor prognosis.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Dipeptidyl Peptidase 4/metabolism , Liver Neoplasms/metabolism , Animals , Biomarkers, Tumor , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Female , Follow-Up Studies , Humans , Immunohistochemistry , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Male , Middle Aged , Neoplasm Recurrence, Local , Prognosis , Xenograft Model Antitumor Assays
17.
PeerJ ; 8: e8454, 2020.
Article in English | MEDLINE | ID: mdl-32025379

ABSTRACT

BACKGROUND: Ubiquitin-conjugating enzyme E2T (UBE2T) is overexpressed in several types of malignancies. However, little is known about its diagnostic significance in intrahepatic cholangiocarcinoma (ICC) and other bile duct diseases or its prognostic value in ICC. METHODS: The expression levels of UBE2T in the intrahepatic bile duct (IHBD, N = 13), biliary intraepithelial neoplasia (BilIN; BilIN-1/2, N = 23; BilIN-3, N = 11), and ICC (N = 401) were examined by immunohistochemistry. The differential diagnostic and prognostic values were also assessed. RESULTS: The number of UBE2T-positive cells was significantly higher in ICC tissues than in nonmalignant tissues, including the IHBD, BilIN-1/2, and BilIN-3 tissues. Kaplan-Meier analysis showed that overexpression of UBE2T was correlated with a shorter time to recurrence (TTR) and overall survival (OS). The 5-year TTR rates in the high UBE2T and low UBE2T groups were 100% and 86.2%, respectively. The corresponding OS rates were 1.9% and 22.2%, respectively. High expression of UBE2T was an independent risk factor for both TTR (hazard ratio: 1.345; 95% confidence interval: 1.047,1.728) and OS (hazard ratio: 1.420; 95% confidence interval: 1.098,1.837). CONCLUSIONS: UBE2T can assist in differentiating benign bile duct diseases from ICC, and high expression of UBE2T suggests a poor prognosis for ICC.

18.
Oncol Lett ; 19(1): 159-166, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31897126

ABSTRACT

Lipopolysaccharide binding protein (LBP) has been reported to be associated with prognosis in colorectal carcinoma and renal cell carcinoma; however, the clinical significance of LBP in human primary hepatocellular carcinoma (HCC) is inconclusive. We aimed to investigate the clinical significance and prognostic value of LBP in human primary HCC. In the present study, 346 patients with HCC who underwent curative resection were retrospectively analyzed. LBP protein expression was evaluated using western blot analysis and immunohistochemistry. LBP scores collected from immunohistochemical analysis were obtained by multiplying staining intensity and the percentage of positive cells. An outcome-based best cutoff-point was calculated by X-tile software. Moreover, Kaplan-Meier curves and Cox regressions were used for prognosis evaluation. LBP was frequently overexpressed in HCC compared with that in peritumor tissues (five pairs by western blot analysis, P=0.0533; 77 pairs by immunohistochemistry, P=0.0171), and LBP expression was positively associated with tumor-node-metastasis stage and tumor differentiation. Patients who had high LBP expression had decreased overall survival and time to recurrence compared with patients with low LBP expression. Furthermore, patients who were both serum α-fetoprotein positive and had high LBP expression had poor prognoses. Univariate and multivariate Cox analyses indicated that this combination was an independent prognostic factor [overall survival: Hazard ratio (HR), 1.458; 95% confidence interval (CI), 1.158-1.837; P=0.001; time to recurrence: HR,1.382; 95% Cl, 1.124-1.700; P=0.002]. In conclusion, LBP is highly expressed in HCC, and high LBP expression combined with serum α-fetoprotein may predict poor outcomes in patients with HCC following curative resection.

19.
Gut ; 69(4): 727-736, 2020 04.
Article in English | MEDLINE | ID: mdl-31519701

ABSTRACT

OBJECTIVES: Hepatocellular carcinoma (HCC) is one of the most frequent malignancies and a major leading cause of cancer-related deaths worldwide. Several therapeutic options like sorafenib and regorafenib provide only modest survival benefit to patients with HCC. This study aims to identify novel druggable candidate genes for patients with HCC. DESIGN: A non-biased CRISPR (clustered regularly interspaced short palindromic repeats) loss-of-function genetic screen targeting all known human kinases was performed to identify vulnerabilities of HCC cells. Whole-transcriptome sequencing (RNA-Seq) and bioinformatics analyses were performed to explore the mechanisms of the action of a cyclin-dependent kinase 12 (CDK12) inhibitor in HCC cells. Multiple in vitro and in vivo assays were used to study the synergistic effects of the combination of CDK12 inhibition and sorafenib. RESULTS: We identify CDK12 as critically required for most HCC cell lines. Suppression of CDK12 using short hairpin RNAs (shRNAs) or its inhibition by the covalent small molecule inhibitor THZ531 leads to robust proliferation inhibition. THZ531 preferentially suppresses the expression of DNA repair-related genes and induces strong DNA damage response in HCC cell lines. The combination of THZ531 and sorafenib shows striking synergy by inducing apoptosis or senescence in HCC cells. The synergy between THZ531 and sorafenib may derive from the notion that THZ531 impairs the adaptive responses of HCC cells induced by sorafenib treatment. CONCLUSION: Our data highlight the potential of CDK12 as a drug target for patients with HCC. The striking synergy of THZ531 and sorafenib suggests a potential combination therapy for this difficult to treat cancer.


Subject(s)
Anilides/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/pathology , Cyclin-Dependent Kinases/antagonists & inhibitors , Liver Neoplasms/pathology , Pyrimidines/pharmacology , Sorafenib/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Culture Techniques , Cell Line, Tumor , Humans , Liver Neoplasms/drug therapy
20.
Braz. j. med. biol. res ; 53(4): e9114, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089357

ABSTRACT

This study aimed to explore the prognostic role of dipeptidyl peptidase 4 (DPP4) expression in hepatocellular carcinoma (HCC). DPP4 expression was measured in formalin-fixed paraffin-embedded specimens that were gathered from 327 HCC patients. Immunohistochemistry analyses were utilized to examine DPP4 expression characteristics and prognostic values (overall survival (OS) and time to recurrence) of DDP4 in HCC tissues. In addition, a patient-derived xenograft (PDX) model was used to assess the correlation between DPP4 expression and tumor growth in vivo. DPP4 was expressed in low levels in HCC tissues in contrast to paired peritumoral tissues (38 cases were down-regulated in a total of 59 cases, 64.4%. P=0.0202). DPP4 expression was significantly correlated with TNM stage (P=0.038), tumor number (P=0.035), and vascular invasion (P=0.024), and significantly reduced in patients who were in TNM stages II and III-V, with multiple tumors, and with microvascular invasion compared to patients with TNM stage I, single tumor, and no microvascular invasion. Notably, HCC tissues with low expression of DPP4 had poor OS (P=0.016) compared with HCC tissues with high expression of DPP4, and results from PDX model showed that tumor growth was significantly faster in HCC patients that lowly expressed DPP4 compared to those with highly expressed DPP4. Our findings suggested that low levels of DPP4 could impact the aggressiveness of HCC and contribute to a poor prognosis.


Subject(s)
Humans , Animals , Male , Female , Middle Aged , Carcinoma, Hepatocellular/metabolism , Dipeptidyl Peptidase 4/metabolism , Liver Neoplasms/metabolism , Prognosis , Immunohistochemistry , Biomarkers, Tumor , Follow-Up Studies , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Xenograft Model Antitumor Assays , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Neoplasm Recurrence, Local
SELECTION OF CITATIONS
SEARCH DETAIL
...